mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
653 lines
26 KiB
653 lines
26 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include <opencv2/ts/cuda_test.hpp> // EXPECT_MAT_NEAR |
|
#include "../src/fisheye.hpp" |
|
#include "opencv2/videoio.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
class fisheyeTest : public ::testing::Test { |
|
|
|
protected: |
|
const static cv::Size imageSize; |
|
const static cv::Matx33d K; |
|
const static cv::Vec4d D; |
|
const static cv::Matx33d R; |
|
const static cv::Vec3d T; |
|
std::string datasets_repository_path; |
|
|
|
virtual void SetUp() { |
|
datasets_repository_path = combine(cvtest::TS::ptr()->get_data_path(), "cv/cameracalibration/fisheye"); |
|
} |
|
|
|
protected: |
|
std::string combine(const std::string& _item1, const std::string& _item2); |
|
}; |
|
|
|
const cv::Size fisheyeTest::imageSize(1280, 800); |
|
|
|
const cv::Matx33d fisheyeTest::K(558.478087865323, 0, 620.458515360843, |
|
0, 560.506767351568, 381.939424848348, |
|
0, 0, 1); |
|
|
|
const cv::Vec4d fisheyeTest::D(-0.0014613319981768, -0.00329861110580401, 0.00605760088590183, -0.00374209380722371); |
|
|
|
|
|
const cv::Matx33d fisheyeTest::R ( 9.9756700084424932e-01, 6.9698277640183867e-02, 1.4929569991321144e-03, |
|
-6.9711825162322980e-02, 9.9748249845531767e-01, 1.2997180766418455e-02, |
|
-5.8331736398316541e-04,-1.3069635393884985e-02, 9.9991441852366736e-01); |
|
|
|
const cv::Vec3d fisheyeTest::T(-9.9217369356044638e-02, 3.1741831972356663e-03, 1.8551007952921010e-04); |
|
|
|
std::string fisheyeTest::combine(const std::string& _item1, const std::string& _item2) |
|
{ |
|
std::string item1 = _item1, item2 = _item2; |
|
std::replace(item1.begin(), item1.end(), '\\', '/'); |
|
std::replace(item2.begin(), item2.end(), '\\', '/'); |
|
|
|
if (item1.empty()) |
|
return item2; |
|
|
|
if (item2.empty()) |
|
return item1; |
|
|
|
char last = item1[item1.size()-1]; |
|
return item1 + (last != '/' ? "/" : "") + item2; |
|
} |
|
|
|
TEST_F(fisheyeTest, Calibration) |
|
{ |
|
const int n_images = 34; |
|
|
|
std::vector<std::vector<cv::Point2d> > imagePoints(n_images); |
|
std::vector<std::vector<cv::Point3d> > objectPoints(n_images); |
|
|
|
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY"); |
|
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_left.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_left[cv::format("image_%d", i )] >> imagePoints[i]; |
|
fs_left.release(); |
|
|
|
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_object.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_object[cv::format("image_%d", i )] >> objectPoints[i]; |
|
fs_object.release(); |
|
|
|
int flag = 0; |
|
flag |= cv::CALIB_RECOMPUTE_EXTRINSIC; |
|
flag |= cv::CALIB_CHECK_COND; |
|
flag |= cv::CALIB_FIX_SKEW; |
|
|
|
cv::Matx33d theK; |
|
cv::Vec4d theD; |
|
|
|
cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, theK, theD, |
|
cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6)); |
|
|
|
EXPECT_MAT_NEAR(theK, this->K, 1e-10); |
|
EXPECT_MAT_NEAR(theD, this->D, 1e-10); |
|
} |
|
|
|
TEST_F(fisheyeTest, CalibrationWithFixedFocalLength) |
|
{ |
|
const int n_images = 34; |
|
|
|
std::vector<std::vector<cv::Point2d> > imagePoints(n_images); |
|
std::vector<std::vector<cv::Point3d> > objectPoints(n_images); |
|
|
|
const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY"); |
|
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_left.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_left[cv::format("image_%d", i )] >> imagePoints[i]; |
|
fs_left.release(); |
|
|
|
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_object.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_object[cv::format("image_%d", i )] >> objectPoints[i]; |
|
fs_object.release(); |
|
|
|
int flag = 0; |
|
flag |= cv::CALIB_RECOMPUTE_EXTRINSIC; |
|
flag |= cv::CALIB_CHECK_COND; |
|
flag |= cv::CALIB_FIX_SKEW; |
|
flag |= cv::CALIB_FIX_FOCAL_LENGTH; |
|
flag |= cv::CALIB_USE_INTRINSIC_GUESS; |
|
|
|
cv::Matx33d theK = this->K; |
|
const cv::Matx33d newK( |
|
558.478088, 0.000000, 620.458461, |
|
0.000000, 560.506767, 381.939362, |
|
0.000000, 0.000000, 1.000000); |
|
|
|
cv::Vec4d theD; |
|
const cv::Vec4d newD(-0.001461, -0.003298, 0.006057, -0.003742); |
|
|
|
cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, theK, theD, |
|
cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6)); |
|
|
|
// ensure that CALIB_FIX_FOCAL_LENGTH works and focal lenght has not changed |
|
EXPECT_EQ(theK(0,0), K(0,0)); |
|
EXPECT_EQ(theK(1,1), K(1,1)); |
|
|
|
EXPECT_MAT_NEAR(theK, newK, 1e-6); |
|
EXPECT_MAT_NEAR(theD, newD, 1e-6); |
|
} |
|
|
|
TEST_F(fisheyeTest, Homography) |
|
{ |
|
const int n_images = 1; |
|
|
|
std::vector<std::vector<cv::Point2d> > imagePoints(n_images); |
|
std::vector<std::vector<cv::Point3d> > objectPoints(n_images); |
|
|
|
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY"); |
|
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_left.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_left[cv::format("image_%d", i )] >> imagePoints[i]; |
|
fs_left.release(); |
|
|
|
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_object.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_object[cv::format("image_%d", i )] >> objectPoints[i]; |
|
fs_object.release(); |
|
|
|
cv::internal::IntrinsicParams param; |
|
param.Init(cv::Vec2d(cv::max(imageSize.width, imageSize.height) / CV_PI, cv::max(imageSize.width, imageSize.height) / CV_PI), |
|
cv::Vec2d(imageSize.width / 2.0 - 0.5, imageSize.height / 2.0 - 0.5)); |
|
|
|
cv::Mat _imagePoints (imagePoints[0]); |
|
cv::Mat _objectPoints(objectPoints[0]); |
|
|
|
cv::Mat imagePointsNormalized = NormalizePixels(_imagePoints, param).reshape(1).t(); |
|
_objectPoints = _objectPoints.reshape(1, (int)_objectPoints.total()).t(); |
|
cv::Mat objectPointsMean, covObjectPoints; |
|
|
|
int Np = imagePointsNormalized.cols; |
|
cv::calcCovarMatrix(_objectPoints, covObjectPoints, objectPointsMean, cv::COVAR_NORMAL | cv::COVAR_COLS); |
|
cv::SVD svd(covObjectPoints); |
|
cv::Mat theR(svd.vt); |
|
|
|
if (cv::norm(theR(cv::Rect(2, 0, 1, 2))) < 1e-6) |
|
theR = cv::Mat::eye(3,3, CV_64FC1); |
|
if (cv::determinant(theR) < 0) |
|
theR = -theR; |
|
|
|
cv::Mat theT = -theR * objectPointsMean; |
|
cv::Mat X_new = theR * _objectPoints + theT * cv::Mat::ones(1, Np, CV_64FC1); |
|
cv::Mat H = cv::internal::ComputeHomography(imagePointsNormalized, X_new.rowRange(0, 2)); |
|
|
|
cv::Mat M = cv::Mat::ones(3, X_new.cols, CV_64FC1); |
|
X_new.rowRange(0, 2).copyTo(M.rowRange(0, 2)); |
|
cv::Mat mrep = H * M; |
|
|
|
cv::divide(mrep, cv::Mat::ones(3,1, CV_64FC1) * mrep.row(2).clone(), mrep); |
|
|
|
cv::Mat merr = (mrep.rowRange(0, 2) - imagePointsNormalized).t(); |
|
|
|
cv::Vec2d std_err; |
|
cv::meanStdDev(merr.reshape(2), cv::noArray(), std_err); |
|
std_err *= sqrt((double)merr.reshape(2).total() / (merr.reshape(2).total() - 1)); |
|
|
|
cv::Vec2d correct_std_err(0.00516740156010384, 0.00644205331553901); |
|
EXPECT_MAT_NEAR(std_err, correct_std_err, 1e-12); |
|
} |
|
|
|
TEST_F(fisheyeTest, EstimateUncertainties) |
|
{ |
|
const int n_images = 34; |
|
|
|
std::vector<std::vector<cv::Point2d> > imagePoints(n_images); |
|
std::vector<std::vector<cv::Point3d> > objectPoints(n_images); |
|
|
|
const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY"); |
|
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_left.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_left[cv::format("image_%d", i )] >> imagePoints[i]; |
|
fs_left.release(); |
|
|
|
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_object.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_object[cv::format("image_%d", i )] >> objectPoints[i]; |
|
fs_object.release(); |
|
|
|
int flag = 0; |
|
flag |= cv::CALIB_RECOMPUTE_EXTRINSIC; |
|
flag |= cv::CALIB_CHECK_COND; |
|
flag |= cv::CALIB_FIX_SKEW; |
|
|
|
cv::Matx33d theK; |
|
cv::Vec4d theD; |
|
std::vector<cv::Vec3d> rvec; |
|
std::vector<cv::Vec3d> tvec; |
|
|
|
cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, theK, theD, |
|
rvec, tvec, flag, cv::TermCriteria(3, 20, 1e-6)); |
|
|
|
cv::internal::IntrinsicParams param, errors; |
|
cv::Vec2d err_std; |
|
double thresh_cond = 1e6; |
|
int check_cond = 1; |
|
param.Init(cv::Vec2d(theK(0,0), theK(1,1)), cv::Vec2d(theK(0,2), theK(1, 2)), theD); |
|
param.isEstimate = std::vector<uchar>(9, 1); |
|
param.isEstimate[4] = 0; |
|
|
|
errors.isEstimate = param.isEstimate; |
|
|
|
double rms; |
|
|
|
cv::internal::EstimateUncertainties(objectPoints, imagePoints, param, rvec, tvec, |
|
errors, err_std, thresh_cond, check_cond, rms); |
|
|
|
EXPECT_MAT_NEAR(errors.f, cv::Vec2d(1.34250246865020720, 1.36037536429654530), 1e-10); |
|
EXPECT_MAT_NEAR(errors.c, cv::Vec2d(0.92070526160049848, 0.84383585812851514), 1e-10); |
|
EXPECT_MAT_NEAR(errors.k, cv::Vec4d(0.0053379581373996041, 0.017389792901700545, 0.022036256089491224, 0.0094714594258908952), 1e-10); |
|
EXPECT_MAT_NEAR(err_std, cv::Vec2d(0.187475975266883, 0.185678953263995), 1e-10); |
|
CV_Assert(fabs(rms - 0.263782587133546) < 1e-10); |
|
CV_Assert(errors.alpha == 0); |
|
} |
|
|
|
TEST_F(fisheyeTest, stereoCalibrate) |
|
{ |
|
const int n_images = 34; |
|
|
|
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY"); |
|
|
|
std::vector<std::vector<cv::Point2d> > leftPoints(n_images); |
|
std::vector<std::vector<cv::Point2d> > rightPoints(n_images); |
|
std::vector<std::vector<cv::Point3d> > objectPoints(n_images); |
|
|
|
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_left.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_left[cv::format("image_%d", i )] >> leftPoints[i]; |
|
fs_left.release(); |
|
|
|
cv::FileStorage fs_right(combine(folder, "right.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_right.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_right[cv::format("image_%d", i )] >> rightPoints[i]; |
|
fs_right.release(); |
|
|
|
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_object.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_object[cv::format("image_%d", i )] >> objectPoints[i]; |
|
fs_object.release(); |
|
|
|
cv::Matx33d K1, K2, theR; |
|
cv::Vec3d theT; |
|
cv::Vec4d D1, D2; |
|
|
|
int flag = 0; |
|
flag |= cv::CALIB_RECOMPUTE_EXTRINSIC; |
|
flag |= cv::CALIB_CHECK_COND; |
|
flag |= cv::CALIB_FIX_SKEW; |
|
|
|
cv::fisheye::stereoCalibrate(objectPoints, leftPoints, rightPoints, |
|
K1, D1, K2, D2, imageSize, theR, theT, flag, |
|
cv::TermCriteria(3, 12, 0)); |
|
|
|
cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523, |
|
-0.06956823121068059, 0.9975601387249519, 0.005833595226966235, |
|
-0.006071257768382089, -0.006271040135405457, 0.9999619062167968); |
|
cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699); |
|
cv::Matx33d K1_correct (561.195925927249, 0, 621.282400272412, |
|
0, 562.849402029712, 380.555455380889, |
|
0, 0, 1); |
|
|
|
cv::Matx33d K2_correct (560.395452535348, 0, 678.971652040359, |
|
0, 561.90171021422, 380.401340535339, |
|
0, 0, 1); |
|
|
|
cv::Vec4d D1_correct (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771); |
|
cv::Vec4d D2_correct (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222); |
|
|
|
EXPECT_MAT_NEAR(theR, R_correct, 1e-10); |
|
EXPECT_MAT_NEAR(theT, T_correct, 1e-10); |
|
|
|
EXPECT_MAT_NEAR(K1, K1_correct, 1e-10); |
|
EXPECT_MAT_NEAR(K2, K2_correct, 1e-10); |
|
|
|
EXPECT_MAT_NEAR(D1, D1_correct, 1e-10); |
|
EXPECT_MAT_NEAR(D2, D2_correct, 1e-10); |
|
|
|
} |
|
|
|
TEST_F(fisheyeTest, stereoCalibrateFixIntrinsic) |
|
{ |
|
const int n_images = 34; |
|
|
|
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY"); |
|
|
|
std::vector<std::vector<cv::Point2d> > leftPoints(n_images); |
|
std::vector<std::vector<cv::Point2d> > rightPoints(n_images); |
|
std::vector<std::vector<cv::Point3d> > objectPoints(n_images); |
|
|
|
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_left.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_left[cv::format("image_%d", i )] >> leftPoints[i]; |
|
fs_left.release(); |
|
|
|
cv::FileStorage fs_right(combine(folder, "right.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_right.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_right[cv::format("image_%d", i )] >> rightPoints[i]; |
|
fs_right.release(); |
|
|
|
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_object.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_object[cv::format("image_%d", i )] >> objectPoints[i]; |
|
fs_object.release(); |
|
|
|
cv::Matx33d theR; |
|
cv::Vec3d theT; |
|
|
|
int flag = 0; |
|
flag |= cv::CALIB_RECOMPUTE_EXTRINSIC; |
|
flag |= cv::CALIB_CHECK_COND; |
|
flag |= cv::CALIB_FIX_SKEW; |
|
flag |= cv::CALIB_FIX_INTRINSIC; |
|
|
|
cv::Matx33d K1 (561.195925927249, 0, 621.282400272412, |
|
0, 562.849402029712, 380.555455380889, |
|
0, 0, 1); |
|
|
|
cv::Matx33d K2 (560.395452535348, 0, 678.971652040359, |
|
0, 561.90171021422, 380.401340535339, |
|
0, 0, 1); |
|
|
|
cv::Vec4d D1 (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771); |
|
cv::Vec4d D2 (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222); |
|
|
|
cv::fisheye::stereoCalibrate(objectPoints, leftPoints, rightPoints, |
|
K1, D1, K2, D2, imageSize, theR, theT, flag, |
|
cv::TermCriteria(3, 12, 0)); |
|
|
|
cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523, |
|
-0.06956823121068059, 0.9975601387249519, 0.005833595226966235, |
|
-0.006071257768382089, -0.006271040135405457, 0.9999619062167968); |
|
cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699); |
|
|
|
|
|
EXPECT_MAT_NEAR(theR, R_correct, 1e-10); |
|
EXPECT_MAT_NEAR(theT, T_correct, 1e-10); |
|
} |
|
|
|
TEST_F(fisheyeTest, CalibrationWithDifferentPointsNumber) |
|
{ |
|
const int n_images = 2; |
|
|
|
std::vector<std::vector<cv::Point2d> > imagePoints(n_images); |
|
std::vector<std::vector<cv::Point3d> > objectPoints(n_images); |
|
|
|
std::vector<cv::Point2d> imgPoints1(10); |
|
std::vector<cv::Point2d> imgPoints2(15); |
|
|
|
std::vector<cv::Point3d> objectPoints1(imgPoints1.size()); |
|
std::vector<cv::Point3d> objectPoints2(imgPoints2.size()); |
|
|
|
for (size_t i = 0; i < imgPoints1.size(); i++) |
|
{ |
|
imgPoints1[i] = cv::Point2d((double)i, (double)i); |
|
objectPoints1[i] = cv::Point3d((double)i, (double)i, 10.0); |
|
} |
|
|
|
for (size_t i = 0; i < imgPoints2.size(); i++) |
|
{ |
|
imgPoints2[i] = cv::Point2d(i + 0.5, i + 0.5); |
|
objectPoints2[i] = cv::Point3d(i + 0.5, i + 0.5, 10.0); |
|
} |
|
|
|
imagePoints[0] = imgPoints1; |
|
imagePoints[1] = imgPoints2; |
|
objectPoints[0] = objectPoints1; |
|
objectPoints[1] = objectPoints2; |
|
|
|
cv::Matx33d theK = cv::Matx33d::eye(); |
|
cv::Vec4d theD; |
|
|
|
int flag = 0; |
|
flag |= cv::CALIB_RECOMPUTE_EXTRINSIC; |
|
flag |= cv::CALIB_USE_INTRINSIC_GUESS; |
|
flag |= cv::CALIB_FIX_SKEW; |
|
|
|
cv::fisheye::calibrate(objectPoints, imagePoints, cv::Size(100, 100), theK, theD, |
|
cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6)); |
|
} |
|
|
|
|
|
TEST_F(fisheyeTest, stereoCalibrateWithPerViewTransformations) |
|
{ |
|
const int n_images = 34; |
|
|
|
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY"); |
|
|
|
std::vector<std::vector<cv::Point2d> > leftPoints(n_images); |
|
std::vector<std::vector<cv::Point2d> > rightPoints(n_images); |
|
std::vector<std::vector<cv::Point3d> > objectPoints(n_images); |
|
|
|
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_left.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_left[cv::format("image_%d", i )] >> leftPoints[i]; |
|
fs_left.release(); |
|
|
|
cv::FileStorage fs_right(combine(folder, "right.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_right.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_right[cv::format("image_%d", i )] >> rightPoints[i]; |
|
fs_right.release(); |
|
|
|
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_object.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_object[cv::format("image_%d", i )] >> objectPoints[i]; |
|
fs_object.release(); |
|
|
|
cv::Matx33d K1, K2, theR; |
|
cv::Vec3d theT; |
|
cv::Vec4d D1, D2; |
|
|
|
std::vector<cv::Mat> rvecs, tvecs; |
|
|
|
int flag = 0; |
|
flag |= cv::CALIB_RECOMPUTE_EXTRINSIC; |
|
flag |= cv::CALIB_CHECK_COND; |
|
flag |= cv::CALIB_FIX_SKEW; |
|
|
|
double rmsErrorStereoCalib = cv::fisheye::stereoCalibrate(objectPoints, leftPoints, rightPoints, |
|
K1, D1, K2, D2, imageSize, theR, theT, rvecs, tvecs, flag, |
|
cv::TermCriteria(3, 12, 0)); |
|
|
|
std::vector<cv::Point2d> reprojectedImgPts[2] = { std::vector<cv::Point2d>(n_images), |
|
std::vector<cv::Point2d>(n_images) }; |
|
size_t totalPoints = 0; |
|
double totalMSError[2] = { 0, 0 }; |
|
for( size_t i = 0; i < n_images; i++ ) |
|
{ |
|
cv::Matx33d viewRotMat1, viewRotMat2; |
|
cv::Vec3d viewT1, viewT2; |
|
cv::Mat rVec; |
|
cv::Rodrigues( rvecs[i], rVec ); |
|
rVec.convertTo(viewRotMat1, CV_64F); |
|
tvecs[i].convertTo(viewT1, CV_64F); |
|
|
|
viewRotMat2 = theR * viewRotMat1; |
|
cv::Vec3d T2t = theR * viewT1; |
|
viewT2 = T2t + theT; |
|
|
|
cv::Vec3d viewRotVec1, viewRotVec2; |
|
cv::Rodrigues(viewRotMat1, viewRotVec1); |
|
cv::Rodrigues(viewRotMat2, viewRotVec2); |
|
|
|
double alpha1 = K1(0, 1) / K1(0, 0); |
|
double alpha2 = K2(0, 1) / K2(0, 0); |
|
cv::fisheye::projectPoints(objectPoints[i], reprojectedImgPts[0], viewRotVec1, viewT1, K1, D1, alpha1); |
|
cv::fisheye::projectPoints(objectPoints[i], reprojectedImgPts[1], viewRotVec2, viewT2, K2, D2, alpha2); |
|
|
|
double viewMSError[2] = { |
|
cv::norm(leftPoints[i], reprojectedImgPts[0], cv::NORM_L2SQR), |
|
cv::norm(rightPoints[i], reprojectedImgPts[1], cv::NORM_L2SQR) |
|
}; |
|
|
|
size_t n = objectPoints[i].size(); |
|
totalMSError[0] += viewMSError[0]; |
|
totalMSError[1] += viewMSError[1]; |
|
totalPoints += n; |
|
} |
|
double rmsErrorFromReprojectedImgPts = std::sqrt((totalMSError[0] + totalMSError[1]) / (2 * totalPoints)); |
|
|
|
cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523, |
|
-0.06956823121068059, 0.9975601387249519, 0.005833595226966235, |
|
-0.006071257768382089, -0.006271040135405457, 0.9999619062167968); |
|
cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699); |
|
cv::Matx33d K1_correct (561.195925927249, 0, 621.282400272412, |
|
0, 562.849402029712, 380.555455380889, |
|
0, 0, 1); |
|
|
|
cv::Matx33d K2_correct (560.395452535348, 0, 678.971652040359, |
|
0, 561.90171021422, 380.401340535339, |
|
0, 0, 1); |
|
|
|
cv::Vec4d D1_correct (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771); |
|
cv::Vec4d D2_correct (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222); |
|
|
|
EXPECT_MAT_NEAR(theR, R_correct, 1e-10); |
|
EXPECT_MAT_NEAR(theT, T_correct, 1e-10); |
|
|
|
EXPECT_MAT_NEAR(K1, K1_correct, 1e-10); |
|
EXPECT_MAT_NEAR(K2, K2_correct, 1e-10); |
|
|
|
EXPECT_MAT_NEAR(D1, D1_correct, 1e-10); |
|
EXPECT_MAT_NEAR(D2, D2_correct, 1e-10); |
|
|
|
EXPECT_NEAR(rmsErrorStereoCalib, rmsErrorFromReprojectedImgPts, 1e-4); |
|
} |
|
|
|
TEST_F(fisheyeTest, multiview_calibration) |
|
{ |
|
const int n_images = 34; |
|
|
|
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY"); |
|
|
|
std::vector<std::vector<cv::Point2f> > leftPoints(n_images); |
|
std::vector<std::vector<cv::Point2f> > rightPoints(n_images); |
|
std::vector<std::vector<cv::Point3f> > objectPoints(n_images); |
|
|
|
cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_left.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_left[cv::format("image_%d", i )] >> leftPoints[i]; |
|
fs_left.release(); |
|
|
|
cv::FileStorage fs_right(combine(folder, "right.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_right.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_right[cv::format("image_%d", i )] >> rightPoints[i]; |
|
fs_right.release(); |
|
|
|
cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); |
|
CV_Assert(fs_object.isOpened()); |
|
for(int i = 0; i < n_images; ++i) |
|
fs_object[cv::format("image_%d", i )] >> objectPoints[i]; |
|
fs_object.release(); |
|
|
|
std::vector<std::vector<cv::Mat>> image_points_all(2, std::vector<cv::Mat>(leftPoints.size())); |
|
for (int i = 0; i < (int)leftPoints.size(); i++) { |
|
cv::Mat left_pts(leftPoints[i], false) , right_pts(rightPoints[i], false); |
|
left_pts.copyTo(image_points_all[0][i]); |
|
right_pts.copyTo(image_points_all[1][i]); |
|
} |
|
std::vector<cv::Size> image_sizes(2, imageSize); |
|
cv::Mat visibility_mat = cv::Mat_<uchar>::ones(2, (int)leftPoints.size()), errors_mat, output_pairs; |
|
std::vector<cv::Mat> Rs, Ts, Ks, distortions, rvecs0, tvecs0; |
|
std::vector<uchar> is_fisheye(2, true); |
|
int flag = 0; |
|
flag |= cv::CALIB_RECOMPUTE_EXTRINSIC; |
|
flag |= cv::CALIB_CHECK_COND; |
|
flag |= cv::CALIB_FIX_SKEW; |
|
|
|
std::vector<int> all_flags(2, flag); |
|
|
|
calibrateMultiview (objectPoints, image_points_all, image_sizes, visibility_mat, |
|
Rs, Ts, Ks, distortions, rvecs0, tvecs0, is_fisheye, errors_mat, output_pairs, false, all_flags); |
|
cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523, |
|
-0.06956823121068059, 0.9975601387249519, 0.005833595226966235, |
|
-0.006071257768382089, -0.006271040135405457, 0.9999619062167968); |
|
cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699); |
|
cv::Matx33d K1_correct (561.195925927249, 0, 621.282400272412, |
|
0, 562.849402029712, 380.555455380889, |
|
0, 0, 1); |
|
|
|
cv::Matx33d K2_correct (560.395452535348, 0, 678.971652040359, |
|
0, 561.90171021422, 380.401340535339, |
|
0, 0, 1); |
|
|
|
cv::Vec4d D1_correct (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771); |
|
cv::Vec4d D2_correct (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222); |
|
|
|
cv::Mat theR; |
|
cv::Rodrigues(Rs[1], theR); |
|
|
|
EXPECT_MAT_NEAR(theR, R_correct, 1e-2); |
|
EXPECT_MAT_NEAR(Ts[1], T_correct, 5e-3); |
|
|
|
EXPECT_MAT_NEAR(Ks[0], K1_correct, 4); |
|
EXPECT_MAT_NEAR(Ks[1], K2_correct, 5); |
|
|
|
EXPECT_MAT_NEAR(distortions[0], D1_correct, 1e-2); |
|
EXPECT_MAT_NEAR(distortions[1], D2_correct, 5e-2); |
|
} |
|
|
|
}} // namespace
|
|
|