mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2812 lines
144 KiB
2812 lines
144 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html |
|
|
|
#ifndef OPENCV_3D_HPP |
|
#define OPENCV_3D_HPP |
|
|
|
#include "opencv2/core.hpp" |
|
#include "opencv2/core/types_c.h" |
|
|
|
#include "opencv2/3d/depth.hpp" |
|
#include "opencv2/3d/odometry.hpp" |
|
#include "opencv2/3d/odometry_frame.hpp" |
|
#include "opencv2/3d/odometry_settings.hpp" |
|
#include "opencv2/3d/volume.hpp" |
|
#include "opencv2/3d/ptcloud.hpp" |
|
|
|
/** |
|
@defgroup _3d 3D vision functionality |
|
|
|
Most of the functions in this section use a so-called pinhole camera model. The view of a scene |
|
is obtained by projecting a scene's 3D point \f$P_w\f$ into the image plane using a perspective |
|
transformation which forms the corresponding pixel \f$p\f$. Both \f$P_w\f$ and \f$p\f$ are |
|
represented in homogeneous coordinates, i.e. as 3D and 2D homogeneous vector respectively. You will |
|
find a brief introduction to projective geometry, homogeneous vectors and homogeneous |
|
transformations at the end of this section's introduction. For more succinct notation, we often drop |
|
the 'homogeneous' and say vector instead of homogeneous vector. |
|
|
|
The distortion-free projective transformation given by a pinhole camera model is shown below. |
|
|
|
\f[s \; p = A \begin{bmatrix} R|t \end{bmatrix} P_w,\f] |
|
|
|
where \f$P_w\f$ is a 3D point expressed with respect to the world coordinate system, |
|
\f$p\f$ is a 2D pixel in the image plane, \f$A\f$ is the camera intrinsic matrix, |
|
\f$R\f$ and \f$t\f$ are the rotation and translation that describe the change of coordinates from |
|
world to camera coordinate systems (or camera frame) and \f$s\f$ is the projective transformation's |
|
arbitrary scaling and not part of the camera model. |
|
|
|
The camera intrinsic matrix \f$A\f$ (notation used as in @cite Zhang2000 and also generally notated |
|
as \f$K\f$) projects 3D points given in the camera coordinate system to 2D pixel coordinates, i.e. |
|
|
|
\f[p = A P_c.\f] |
|
|
|
The camera intrinsic matrix \f$A\f$ is composed of the focal lengths \f$f_x\f$ and \f$f_y\f$, which are |
|
expressed in pixel units, and the principal point \f$(c_x, c_y)\f$, that is usually close to the |
|
image center: |
|
|
|
\f[A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1},\f] |
|
|
|
and thus |
|
|
|
\f[s \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1} \vecthree{X_c}{Y_c}{Z_c}.\f] |
|
|
|
The matrix of intrinsic parameters does not depend on the scene viewed. So, once estimated, it can |
|
be re-used as long as the focal length is fixed (in case of a zoom lens). Thus, if an image from the |
|
camera is scaled by a factor, all of these parameters need to be scaled (multiplied/divided, |
|
respectively) by the same factor. |
|
|
|
The joint rotation-translation matrix \f$[R|t]\f$ is the matrix product of a projective |
|
transformation and a homogeneous transformation. The 3-by-4 projective transformation maps 3D points |
|
represented in camera coordinates to 2D points in the image plane and represented in normalized |
|
camera coordinates \f$x' = X_c / Z_c\f$ and \f$y' = Y_c / Z_c\f$: |
|
|
|
\f[Z_c \begin{bmatrix} |
|
x' \\ |
|
y' \\ |
|
1 |
|
\end{bmatrix} = \begin{bmatrix} |
|
1 & 0 & 0 & 0 \\ |
|
0 & 1 & 0 & 0 \\ |
|
0 & 0 & 1 & 0 |
|
\end{bmatrix} |
|
\begin{bmatrix} |
|
X_c \\ |
|
Y_c \\ |
|
Z_c \\ |
|
1 |
|
\end{bmatrix}.\f] |
|
|
|
The homogeneous transformation is encoded by the extrinsic parameters \f$R\f$ and \f$t\f$ and |
|
represents the change of basis from world coordinate system \f$w\f$ to the camera coordinate sytem |
|
\f$c\f$. Thus, given the representation of the point \f$P\f$ in world coordinates, \f$P_w\f$, we |
|
obtain \f$P\f$'s representation in the camera coordinate system, \f$P_c\f$, by |
|
|
|
\f[P_c = \begin{bmatrix} |
|
R & t \\ |
|
0 & 1 |
|
\end{bmatrix} P_w,\f] |
|
|
|
This homogeneous transformation is composed out of \f$R\f$, a 3-by-3 rotation matrix, and \f$t\f$, a |
|
3-by-1 translation vector: |
|
|
|
\f[\begin{bmatrix} |
|
R & t \\ |
|
0 & 1 |
|
\end{bmatrix} = \begin{bmatrix} |
|
r_{11} & r_{12} & r_{13} & t_x \\ |
|
r_{21} & r_{22} & r_{23} & t_y \\ |
|
r_{31} & r_{32} & r_{33} & t_z \\ |
|
0 & 0 & 0 & 1 |
|
\end{bmatrix}, |
|
\f] |
|
|
|
and therefore |
|
|
|
\f[\begin{bmatrix} |
|
X_c \\ |
|
Y_c \\ |
|
Z_c \\ |
|
1 |
|
\end{bmatrix} = \begin{bmatrix} |
|
r_{11} & r_{12} & r_{13} & t_x \\ |
|
r_{21} & r_{22} & r_{23} & t_y \\ |
|
r_{31} & r_{32} & r_{33} & t_z \\ |
|
0 & 0 & 0 & 1 |
|
\end{bmatrix} |
|
\begin{bmatrix} |
|
X_w \\ |
|
Y_w \\ |
|
Z_w \\ |
|
1 |
|
\end{bmatrix}.\f] |
|
|
|
Combining the projective transformation and the homogeneous transformation, we obtain the projective |
|
transformation that maps 3D points in world coordinates into 2D points in the image plane and in |
|
normalized camera coordinates: |
|
|
|
\f[Z_c \begin{bmatrix} |
|
x' \\ |
|
y' \\ |
|
1 |
|
\end{bmatrix} = \begin{bmatrix} R|t \end{bmatrix} \begin{bmatrix} |
|
X_w \\ |
|
Y_w \\ |
|
Z_w \\ |
|
1 |
|
\end{bmatrix} = \begin{bmatrix} |
|
r_{11} & r_{12} & r_{13} & t_x \\ |
|
r_{21} & r_{22} & r_{23} & t_y \\ |
|
r_{31} & r_{32} & r_{33} & t_z |
|
\end{bmatrix} |
|
\begin{bmatrix} |
|
X_w \\ |
|
Y_w \\ |
|
Z_w \\ |
|
1 |
|
\end{bmatrix},\f] |
|
|
|
with \f$x' = X_c / Z_c\f$ and \f$y' = Y_c / Z_c\f$. Putting the equations for instrincs and extrinsics together, we can write out |
|
\f$s \; p = A \begin{bmatrix} R|t \end{bmatrix} P_w\f$ as |
|
|
|
\f[s \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1} |
|
\begin{bmatrix} |
|
r_{11} & r_{12} & r_{13} & t_x \\ |
|
r_{21} & r_{22} & r_{23} & t_y \\ |
|
r_{31} & r_{32} & r_{33} & t_z |
|
\end{bmatrix} |
|
\begin{bmatrix} |
|
X_w \\ |
|
Y_w \\ |
|
Z_w \\ |
|
1 |
|
\end{bmatrix}.\f] |
|
|
|
If \f$Z_c \ne 0\f$, the transformation above is equivalent to the following, |
|
|
|
\f[\begin{bmatrix} |
|
u \\ |
|
v |
|
\end{bmatrix} = \begin{bmatrix} |
|
f_x X_c/Z_c + c_x \\ |
|
f_y Y_c/Z_c + c_y |
|
\end{bmatrix}\f] |
|
|
|
with |
|
|
|
\f[\vecthree{X_c}{Y_c}{Z_c} = \begin{bmatrix} |
|
R|t |
|
\end{bmatrix} \begin{bmatrix} |
|
X_w \\ |
|
Y_w \\ |
|
Z_w \\ |
|
1 |
|
\end{bmatrix}.\f] |
|
|
|
The following figure illustrates the pinhole camera model. |
|
|
|
![Pinhole camera model](pics/pinhole_camera_model.png) |
|
|
|
Real lenses usually have some distortion, mostly radial distortion, and slight tangential distortion. |
|
So, the above model is extended as: |
|
|
|
\f[\begin{bmatrix} |
|
u \\ |
|
v |
|
\end{bmatrix} = \begin{bmatrix} |
|
f_x x'' + c_x \\ |
|
f_y y'' + c_y |
|
\end{bmatrix}\f] |
|
|
|
where |
|
|
|
\f[\begin{bmatrix} |
|
x'' \\ |
|
y'' |
|
\end{bmatrix} = \begin{bmatrix} |
|
x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + 2 p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4 \\ |
|
y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\ |
|
\end{bmatrix}\f] |
|
|
|
with |
|
|
|
\f[r^2 = x'^2 + y'^2\f] |
|
|
|
and |
|
|
|
\f[\begin{bmatrix} |
|
x'\\ |
|
y' |
|
\end{bmatrix} = \begin{bmatrix} |
|
X_c/Z_c \\ |
|
Y_c/Z_c |
|
\end{bmatrix},\f] |
|
|
|
if \f$Z_c \ne 0\f$. |
|
|
|
The distortion parameters are the radial coefficients \f$k_1\f$, \f$k_2\f$, \f$k_3\f$, \f$k_4\f$, \f$k_5\f$, and \f$k_6\f$ |
|
,\f$p_1\f$ and \f$p_2\f$ are the tangential distortion coefficients, and \f$s_1\f$, \f$s_2\f$, \f$s_3\f$, and \f$s_4\f$, |
|
are the thin prism distortion coefficients. Higher-order coefficients are not considered in OpenCV. |
|
|
|
The next figures show two common types of radial distortion: barrel distortion |
|
(\f$ 1 + k_1 r^2 + k_2 r^4 + k_3 r^6 \f$ monotonically decreasing) |
|
and pincushion distortion (\f$ 1 + k_1 r^2 + k_2 r^4 + k_3 r^6 \f$ monotonically increasing). |
|
Radial distortion is always monotonic for real lenses, |
|
and if the estimator produces a non-monotonic result, |
|
this should be considered a calibration failure. |
|
More generally, radial distortion must be monotonic and the distortion function must be bijective. |
|
A failed estimation result may look deceptively good near the image center |
|
but will work poorly in e.g. AR/SFM applications. |
|
The optimization method used in OpenCV camera calibration does not include these constraints as |
|
the framework does not support the required integer programming and polynomial inequalities. |
|
See [issue #15992](https://github.com/opencv/opencv/issues/15992) for additional information. |
|
|
|
![](pics/distortion_examples.png) |
|
![](pics/distortion_examples2.png) |
|
|
|
In some cases, the image sensor may be tilted in order to focus an oblique plane in front of the |
|
camera (Scheimpflug principle). This can be useful for particle image velocimetry (PIV) or |
|
triangulation with a laser fan. The tilt causes a perspective distortion of \f$x''\f$ and |
|
\f$y''\f$. This distortion can be modeled in the following way, see e.g. @cite Louhichi07. |
|
|
|
\f[\begin{bmatrix} |
|
u \\ |
|
v |
|
\end{bmatrix} = \begin{bmatrix} |
|
f_x x''' + c_x \\ |
|
f_y y''' + c_y |
|
\end{bmatrix},\f] |
|
|
|
where |
|
|
|
\f[s\vecthree{x'''}{y'''}{1} = |
|
\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}(\tau_x, \tau_y)} |
|
{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)} |
|
{0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\f] |
|
|
|
and the matrix \f$R(\tau_x, \tau_y)\f$ is defined by two rotations with angular parameter |
|
\f$\tau_x\f$ and \f$\tau_y\f$, respectively, |
|
|
|
\f[ |
|
R(\tau_x, \tau_y) = |
|
\vecthreethree{\cos(\tau_y)}{0}{-\sin(\tau_y)}{0}{1}{0}{\sin(\tau_y)}{0}{\cos(\tau_y)} |
|
\vecthreethree{1}{0}{0}{0}{\cos(\tau_x)}{\sin(\tau_x)}{0}{-\sin(\tau_x)}{\cos(\tau_x)} = |
|
\vecthreethree{\cos(\tau_y)}{\sin(\tau_y)\sin(\tau_x)}{-\sin(\tau_y)\cos(\tau_x)} |
|
{0}{\cos(\tau_x)}{\sin(\tau_x)} |
|
{\sin(\tau_y)}{-\cos(\tau_y)\sin(\tau_x)}{\cos(\tau_y)\cos(\tau_x)}. |
|
\f] |
|
|
|
In the functions below the coefficients are passed or returned as |
|
|
|
\f[(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f] |
|
|
|
vector. That is, if the vector contains four elements, it means that \f$k_3=0\f$ . The distortion |
|
coefficients do not depend on the scene viewed. Thus, they also belong to the intrinsic camera |
|
parameters. And they remain the same regardless of the captured image resolution. If, for example, a |
|
camera has been calibrated on images of 320 x 240 resolution, absolutely the same distortion |
|
coefficients can be used for 640 x 480 images from the same camera while \f$f_x\f$, \f$f_y\f$, |
|
\f$c_x\f$, and \f$c_y\f$ need to be scaled appropriately. |
|
|
|
The functions below use the above model to do the following: |
|
|
|
- Project 3D points to the image plane given intrinsic and extrinsic parameters. |
|
- Compute extrinsic parameters given intrinsic parameters, a few 3D points, and their |
|
projections. |
|
- Estimate intrinsic and extrinsic camera parameters from several views of a known calibration |
|
pattern (every view is described by several 3D-2D point correspondences). |
|
- Estimate the relative position and orientation of the stereo camera "heads" and compute the |
|
*rectification* transformation that makes the camera optical axes parallel. |
|
|
|
<B> Homogeneous Coordinates </B><br> |
|
Homogeneous Coordinates are a system of coordinates that are used in projective geometry. Their use |
|
allows to represent points at infinity by finite coordinates and simplifies formulas when compared |
|
to the cartesian counterparts, e.g. they have the advantage that affine transformations can be |
|
expressed as linear homogeneous transformation. |
|
|
|
One obtains the homogeneous vector \f$P_h\f$ by appending a 1 along an n-dimensional cartesian |
|
vector \f$P\f$ e.g. for a 3D cartesian vector the mapping \f$P \rightarrow P_h\f$ is: |
|
|
|
\f[\begin{bmatrix} |
|
X \\ |
|
Y \\ |
|
Z |
|
\end{bmatrix} \rightarrow \begin{bmatrix} |
|
X \\ |
|
Y \\ |
|
Z \\ |
|
1 |
|
\end{bmatrix}.\f] |
|
|
|
For the inverse mapping \f$P_h \rightarrow P\f$, one divides all elements of the homogeneous vector |
|
by its last element, e.g. for a 3D homogeneous vector one gets its 2D cartesian counterpart by: |
|
|
|
\f[\begin{bmatrix} |
|
X \\ |
|
Y \\ |
|
W |
|
\end{bmatrix} \rightarrow \begin{bmatrix} |
|
X / W \\ |
|
Y / W |
|
\end{bmatrix},\f] |
|
|
|
if \f$W \ne 0\f$. |
|
|
|
Due to this mapping, all multiples \f$k P_h\f$, for \f$k \ne 0\f$, of a homogeneous point represent |
|
the same point \f$P_h\f$. An intuitive understanding of this property is that under a projective |
|
transformation, all multiples of \f$P_h\f$ are mapped to the same point. This is the physical |
|
observation one does for pinhole cameras, as all points along a ray through the camera's pinhole are |
|
projected to the same image point, e.g. all points along the red ray in the image of the pinhole |
|
camera model above would be mapped to the same image coordinate. This property is also the source |
|
for the scale ambiguity s in the equation of the pinhole camera model. |
|
|
|
As mentioned, by using homogeneous coordinates we can express any change of basis parameterized by |
|
\f$R\f$ and \f$t\f$ as a linear transformation, e.g. for the change of basis from coordinate system |
|
0 to coordinate system 1 becomes: |
|
|
|
\f[P_1 = R P_0 + t \rightarrow P_{h_1} = \begin{bmatrix} |
|
R & t \\ |
|
0 & 1 |
|
\end{bmatrix} P_{h_0}.\f] |
|
|
|
@note |
|
- Many functions in this module take a camera intrinsic matrix as an input parameter. Although all |
|
functions assume the same structure of this parameter, they may name it differently. The |
|
parameter's description, however, will be clear in that a camera intrinsic matrix with the structure |
|
shown above is required. |
|
- A calibration sample for 3 cameras in a horizontal position can be found at |
|
opencv_source_code/samples/cpp/3calibration.cpp |
|
- A calibration sample based on a sequence of images can be found at |
|
opencv_source_code/samples/cpp/calibration.cpp |
|
- A calibration sample in order to do 3D reconstruction can be found at |
|
opencv_source_code/samples/cpp/build3dmodel.cpp |
|
- A calibration example on stereo calibration can be found at |
|
opencv_source_code/samples/cpp/stereo_calib.cpp |
|
- A calibration example on stereo matching can be found at |
|
opencv_source_code/samples/cpp/stereo_match.cpp |
|
- (Python) A camera calibration sample can be found at |
|
opencv_source_code/samples/python/calibrate.py |
|
|
|
*/ |
|
|
|
namespace cv { |
|
|
|
//! @addtogroup _3d |
|
//! @{ |
|
|
|
//! type of the robust estimation algorithm |
|
enum { LMEDS = 4, //!< least-median of squares algorithm |
|
RANSAC = 8, //!< RANSAC algorithm |
|
RHO = 16, //!< RHO algorithm |
|
USAC_DEFAULT = 32, //!< USAC algorithm, default settings |
|
USAC_PARALLEL = 33, //!< USAC, parallel version |
|
USAC_FM_8PTS = 34, //!< USAC, fundamental matrix 8 points |
|
USAC_FAST = 35, //!< USAC, fast settings |
|
USAC_ACCURATE = 36, //!< USAC, accurate settings |
|
USAC_PROSAC = 37, //!< USAC, sorted points, runs PROSAC |
|
USAC_MAGSAC = 38 //!< USAC, runs MAGSAC++ |
|
}; |
|
|
|
enum SolvePnPMethod { |
|
SOLVEPNP_ITERATIVE = 0, //!< Pose refinement using non-linear Levenberg-Marquardt minimization scheme @cite Madsen04 @cite Eade13 \n |
|
//!< Initial solution for non-planar "objectPoints" needs at least 6 points and uses the DLT algorithm. \n |
|
//!< Initial solution for planar "objectPoints" needs at least 4 points and uses pose from homography decomposition. |
|
SOLVEPNP_EPNP = 1, //!< EPnP: Efficient Perspective-n-Point Camera Pose Estimation @cite lepetit2009epnp |
|
SOLVEPNP_P3P = 2, //!< Complete Solution Classification for the Perspective-Three-Point Problem @cite gao2003complete |
|
SOLVEPNP_DLS = 3, //!< **Broken implementation. Using this flag will fallback to EPnP.** \n |
|
//!< A Direct Least-Squares (DLS) Method for PnP @cite hesch2011direct |
|
SOLVEPNP_UPNP = 4, //!< **Broken implementation. Using this flag will fallback to EPnP.** \n |
|
//!< Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation @cite penate2013exhaustive |
|
SOLVEPNP_AP3P = 5, //!< An Efficient Algebraic Solution to the Perspective-Three-Point Problem @cite Ke17 |
|
SOLVEPNP_IPPE = 6, //!< Infinitesimal Plane-Based Pose Estimation @cite Collins14 \n |
|
//!< Object points must be coplanar. |
|
SOLVEPNP_IPPE_SQUARE = 7, //!< Infinitesimal Plane-Based Pose Estimation @cite Collins14 \n |
|
//!< This is a special case suitable for marker pose estimation.\n |
|
//!< 4 coplanar object points must be defined in the following order: |
|
//!< - point 0: [-squareLength / 2, squareLength / 2, 0] |
|
//!< - point 1: [ squareLength / 2, squareLength / 2, 0] |
|
//!< - point 2: [ squareLength / 2, -squareLength / 2, 0] |
|
//!< - point 3: [-squareLength / 2, -squareLength / 2, 0] |
|
SOLVEPNP_SQPNP = 8, //!< SQPnP: A Consistently Fast and Globally OptimalSolution to the Perspective-n-Point Problem @cite Terzakis2020SQPnP |
|
#ifndef CV_DOXYGEN |
|
SOLVEPNP_MAX_COUNT //!< Used for count |
|
#endif |
|
}; |
|
|
|
//! the algorithm for finding fundamental matrix |
|
enum { FM_7POINT = 1, //!< 7-point algorithm |
|
FM_8POINT = 2, //!< 8-point algorithm |
|
FM_LMEDS = 4, //!< least-median algorithm. 7-point algorithm is used. |
|
FM_RANSAC = 8 //!< RANSAC algorithm. It needs at least 15 points. 7-point algorithm is used. |
|
}; |
|
|
|
enum SamplingMethod { SAMPLING_UNIFORM=0, SAMPLING_PROGRESSIVE_NAPSAC=1, SAMPLING_NAPSAC=2, |
|
SAMPLING_PROSAC=3 }; |
|
enum LocalOptimMethod {LOCAL_OPTIM_NULL=0, LOCAL_OPTIM_INNER_LO=1, LOCAL_OPTIM_INNER_AND_ITER_LO=2, |
|
LOCAL_OPTIM_GC=3, LOCAL_OPTIM_SIGMA=4}; |
|
enum ScoreMethod {SCORE_METHOD_RANSAC=0, SCORE_METHOD_MSAC=1, SCORE_METHOD_MAGSAC=2, SCORE_METHOD_LMEDS=3}; |
|
enum NeighborSearchMethod { NEIGH_FLANN_KNN=0, NEIGH_GRID=1, NEIGH_FLANN_RADIUS=2 }; |
|
enum PolishingMethod { NONE_POLISHER=0, LSQ_POLISHER=1, MAGSAC=2, COV_POLISHER=3 }; |
|
|
|
struct CV_EXPORTS_W_SIMPLE UsacParams |
|
{ // in alphabetical order |
|
CV_WRAP UsacParams(); |
|
CV_PROP_RW double confidence; |
|
CV_PROP_RW bool isParallel; |
|
CV_PROP_RW int loIterations; |
|
CV_PROP_RW LocalOptimMethod loMethod; |
|
CV_PROP_RW int loSampleSize; |
|
CV_PROP_RW int maxIterations; |
|
CV_PROP_RW NeighborSearchMethod neighborsSearch; |
|
CV_PROP_RW int randomGeneratorState; |
|
CV_PROP_RW SamplingMethod sampler; |
|
CV_PROP_RW ScoreMethod score; |
|
CV_PROP_RW double threshold; |
|
CV_PROP_RW PolishingMethod final_polisher; |
|
CV_PROP_RW int final_polisher_iterations; |
|
}; |
|
|
|
/** @brief Converts a rotation matrix to a rotation vector or vice versa. |
|
|
|
@param src Input rotation vector (3x1 or 1x3) or rotation matrix (3x3). |
|
@param dst Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively. |
|
@param jacobian Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial |
|
derivatives of the output array components with respect to the input array components. |
|
|
|
\f[\begin{array}{l} \theta \leftarrow norm(r) \\ r \leftarrow r/ \theta \\ R = \cos(\theta) I + (1- \cos{\theta} ) r r^T + \sin(\theta) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\f] |
|
|
|
Inverse transformation can be also done easily, since |
|
|
|
\f[\sin ( \theta ) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\f] |
|
|
|
A rotation vector is a convenient and most compact representation of a rotation matrix (since any |
|
rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry |
|
optimization procedures like @ref calibrateCamera, @ref stereoCalibrate, or @ref solvePnP . |
|
|
|
@note More information about the computation of the derivative of a 3D rotation matrix with respect to its exponential coordinate |
|
can be found in: |
|
- A Compact Formula for the Derivative of a 3-D Rotation in Exponential Coordinates, Guillermo Gallego, Anthony J. Yezzi @cite Gallego2014ACF |
|
|
|
@note Useful information on SE(3) and Lie Groups can be found in: |
|
- A tutorial on SE(3) transformation parameterizations and on-manifold optimization, Jose-Luis Blanco @cite blanco2010tutorial |
|
- Lie Groups for 2D and 3D Transformation, Ethan Eade @cite Eade17 |
|
- A micro Lie theory for state estimation in robotics, Joan Solà, Jérémie Deray, Dinesh Atchuthan @cite Sol2018AML |
|
*/ |
|
CV_EXPORTS_W void Rodrigues( InputArray src, OutputArray dst, OutputArray jacobian = noArray() ); |
|
|
|
|
|
/** @brief Type of matrix used in LevMarq solver |
|
|
|
Matrix type can be dense, sparse or chosen automatically based on a matrix size, performance considerations or backend availability. |
|
|
|
Note: only dense matrix is now supported |
|
*/ |
|
enum class MatrixType |
|
{ |
|
AUTO = 0, |
|
DENSE = 1, |
|
SPARSE = 2 |
|
}; |
|
|
|
/** @brief Type of variables used in LevMarq solver |
|
|
|
Variables can be linear, rotation (SO(3) group) or rigid transformation (SE(3) group) with corresponding jacobians and exponential updates. |
|
|
|
Note: only linear variables are now supported |
|
*/ |
|
enum class VariableType |
|
{ |
|
LINEAR = 0, |
|
SO3 = 1, |
|
SE3 = 2 |
|
}; |
|
|
|
/** @brief Levenberg-Marquadt solver |
|
|
|
A Levenberg-Marquadt algorithm locally minimizes an objective function value (aka energy, cost or error) starting from |
|
current param vector. |
|
To do that, at each iteration it repeatedly calculates the energy at probe points until it's reduced. |
|
To calculate a probe point, a linear equation is solved: (J^T*J + lambda*D)*dx = -J^T*b where J is a function jacobian, |
|
b is a vector of residuals (aka errors or energy terms), D is a diagonal matrix generated from J^T*J diagonal |
|
and lambda changes for each probe point. Then the resulting dx is "added" to current variable and it forms |
|
a probe value. "Added" is quoted because in some groups (e.g. SO(3) group) such an increment can be a non-trivial operation. |
|
|
|
For more details, please refer to Wikipedia page (https://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm). |
|
|
|
This solver supports fixed variables and two forms of callback function: |
|
1. Generating ordinary jacobian J and residual vector err ("long") |
|
2. Generating normal equation matrix J^T*J and gradient vector J^T*err |
|
|
|
Currently the solver supports dense jacobian matrix and linear parameter increment. |
|
*/ |
|
class CV_EXPORTS LevMarq |
|
{ |
|
public: |
|
/** @brief Optimization report |
|
|
|
The structure is returned when optimization is over. |
|
*/ |
|
struct CV_EXPORTS Report |
|
{ |
|
Report(bool isFound, int nIters, double finalEnergy) : |
|
found(isFound), iters(nIters), energy(finalEnergy) |
|
{ } |
|
// true if the cost function converged to a local minimum which is checked by check* fields, thresholds and other options |
|
// false if the cost function failed to converge because of error, amount of iterations exhausted or lambda explosion |
|
bool found; |
|
// amount of iterations elapsed until the optimization stopped |
|
int iters; |
|
// energy value reached by the optimization |
|
double energy; |
|
}; |
|
|
|
/** @brief Structure to keep LevMarq settings |
|
|
|
The structure allows a user to pass algorithm parameters along with their names like this: |
|
@code |
|
MySolver solver(nVars, callback, MySolver::Settings().geodesicS(true).geoScale(1.0)); |
|
@endcode |
|
*/ |
|
struct CV_EXPORTS Settings |
|
{ |
|
Settings(); |
|
|
|
inline Settings& setJacobiScaling (bool v) { jacobiScaling = v; return *this; } |
|
inline Settings& setUpDouble (bool v) { upDouble = v; return *this; } |
|
inline Settings& setUseStepQuality (bool v) { useStepQuality = v; return *this; } |
|
inline Settings& setClampDiagonal (bool v) { clampDiagonal = v; return *this; } |
|
inline Settings& setStepNormInf (bool v) { stepNormInf = v; return *this; } |
|
inline Settings& setCheckRelEnergyChange (bool v) { checkRelEnergyChange = v; return *this; } |
|
inline Settings& setCheckMinGradient (bool v) { checkMinGradient = v; return *this; } |
|
inline Settings& setCheckStepNorm (bool v) { checkStepNorm = v; return *this; } |
|
inline Settings& setGeodesic (bool v) { geodesic = v; return *this; } |
|
inline Settings& setHGeo (double v) { hGeo = v; return *this; } |
|
inline Settings& setGeoScale (double v) { geoScale = v; return *this; } |
|
inline Settings& setStepNormTolerance (double v) { stepNormTolerance = v; return *this; } |
|
inline Settings& setRelEnergyDeltaTolerance(double v) { relEnergyDeltaTolerance = v; return *this; } |
|
inline Settings& setMinGradientTolerance (double v) { minGradientTolerance = v; return *this; } |
|
inline Settings& setSmallEnergyTolerance (double v) { smallEnergyTolerance = v; return *this; } |
|
inline Settings& setMaxIterations (int v) { maxIterations = (unsigned int)v; return *this; } |
|
inline Settings& setInitialLambda (double v) { initialLambda = v; return *this; } |
|
inline Settings& setInitialLmUpFactor (double v) { initialLmUpFactor = v; return *this; } |
|
inline Settings& setInitialLmDownFactor (double v) { initialLmDownFactor = v; return *this; } |
|
|
|
// normalize jacobian columns for better conditioning |
|
// slows down sparse solver, but maybe this'd be useful for some other solver |
|
bool jacobiScaling; |
|
// double upFactor until the probe is successful |
|
bool upDouble; |
|
// use stepQuality metrics for steps down |
|
bool useStepQuality; |
|
// clamp diagonal values added to J^T*J to pre-defined range of values |
|
bool clampDiagonal; |
|
// to use squared L2 norm or Inf norm for step size estimation |
|
bool stepNormInf; |
|
// to use relEnergyDeltaTolerance or not |
|
bool checkRelEnergyChange; |
|
// to use minGradientTolerance or not |
|
bool checkMinGradient; |
|
// to use stepNormTolerance or not |
|
bool checkStepNorm; |
|
// to use geodesic acceleration or not |
|
bool geodesic; |
|
// second directional derivative approximation step for geodesic acceleration |
|
double hGeo; |
|
// how much of geodesic acceleration is used |
|
double geoScale; |
|
// optimization stops when norm2(dx) drops below this value |
|
double stepNormTolerance; |
|
// optimization stops when relative energy change drops below this value |
|
double relEnergyDeltaTolerance; |
|
// optimization stops when max gradient value (J^T*b vector) drops below this value |
|
double minGradientTolerance; |
|
// optimization stops when energy drops below this value |
|
double smallEnergyTolerance; |
|
// optimization stops after a number of iterations performed |
|
unsigned int maxIterations; |
|
|
|
// LevMarq up and down params |
|
double initialLambda; |
|
double initialLmUpFactor; |
|
double initialLmDownFactor; |
|
}; |
|
|
|
/** "Long" callback: f(param, &err, &J) -> bool |
|
Computes error and Jacobian for the specified vector of parameters, |
|
returns true on success. |
|
|
|
param: the current vector of parameters |
|
err: output vector of errors: err_i = actual_f_i - ideal_f_i |
|
J: output Jacobian: J_ij = d(ideal_f_i)/d(param_j) |
|
|
|
Param vector values may be changed by the callback only if they are fixed. |
|
Changing non-fixed variables may lead to incorrect results. |
|
When J=noArray(), it means that it does not need to be computed. |
|
Dimensionality of error vector and param vector can be different. |
|
The callback should explicitly allocate (with "create" method) each output array |
|
(unless it's noArray()). |
|
*/ |
|
typedef std::function<bool(InputOutputArray, OutputArray, OutputArray)> LongCallback; |
|
|
|
/** Normal callback: f(param, &JtErr, &JtJ, &errnorm) -> bool |
|
|
|
Computes squared L2 error norm, normal equation matrix J^T*J and J^T*err vector |
|
where J is MxN Jacobian: J_ij = d(err_i)/d(param_j) |
|
err is Mx1 vector of errors: err_i = actual_f_i - ideal_f_i |
|
M is a number of error terms, N is a number of variables to optimize. |
|
Make sense to use this class instead of usual Callback if the number |
|
of error terms greatly exceeds the number of variables. |
|
|
|
param: the current Nx1 vector of parameters |
|
JtErr: output Nx1 vector J^T*err |
|
JtJ: output NxN matrix J^T*J |
|
errnorm: output total error: dot(err, err) |
|
|
|
Param vector values may be changed by the callback only if they are fixed. |
|
Changing non-fixed variables may lead to incorrect results. |
|
If JtErr or JtJ are empty, they don't have to be computed. |
|
The callback should explicitly allocate (with "create" method) each output array |
|
(unless it's noArray()). |
|
*/ |
|
typedef std::function<bool(InputOutputArray, OutputArray, OutputArray, double&)> NormalCallback; |
|
|
|
/** |
|
Creates a solver |
|
|
|
@param nvars Number of variables in a param vector |
|
@param callback "Long" callback, produces jacobian and residuals for each energy term, returns true on success |
|
@param settings LevMarq settings structure, see LevMarqBase class for details |
|
@param mask Indicates what variables are fixed during optimization (zeros) and what vars to optimize (non-zeros) |
|
@param matrixType Type of matrix used in the solver; only DENSE and AUTO are supported now |
|
@param paramType Type of optimized parameters; only LINEAR is supported now |
|
@param nerrs Energy terms amount. If zero, callback-generated jacobian size is used instead |
|
@param solveMethod What method to use for linear system solving |
|
*/ |
|
LevMarq(int nvars, LongCallback callback, const Settings& settings = Settings(), InputArray mask = noArray(), |
|
MatrixType matrixType = MatrixType::AUTO, VariableType paramType = VariableType::LINEAR, int nerrs = 0, int solveMethod = DECOMP_SVD); |
|
/** |
|
Creates a solver |
|
|
|
@param nvars Number of variables in a param vector |
|
@param callback Normal callback, produces J^T*J and J^T*b directly instead of J and b, returns true on success |
|
@param settings LevMarq settings structure, see LevMarqBase class for details |
|
@param mask Indicates what variables are fixed during optimization (zeros) and what vars to optimize (non-zeros) |
|
@param matrixType Type of matrix used in the solver; only DENSE and AUTO are supported now |
|
@param paramType Type of optimized parameters; only LINEAR is supported now |
|
@param LtoR Indicates what part of symmetric matrix to copy to another part: lower or upper. Used only with alt. callback |
|
@param solveMethod What method to use for linear system solving |
|
*/ |
|
LevMarq(int nvars, NormalCallback callback, const Settings& settings = Settings(), InputArray mask = noArray(), |
|
MatrixType matrixType = MatrixType::AUTO, VariableType paramType = VariableType::LINEAR, bool LtoR = false, int solveMethod = DECOMP_SVD); |
|
|
|
/** |
|
Creates a solver |
|
|
|
@param param Input/output vector containing starting param vector and resulting optimized params |
|
@param callback "Long" callback, produces jacobian and residuals for each energy term, returns true on success |
|
@param settings LevMarq settings structure, see LevMarqBase class for details |
|
@param mask Indicates what variables are fixed during optimization (zeros) and what vars to optimize (non-zeros) |
|
@param matrixType Type of matrix used in the solver; only DENSE and AUTO are supported now |
|
@param paramType Type of optimized parameters; only LINEAR is supported now |
|
@param nerrs Energy terms amount. If zero, callback-generated jacobian size is used instead |
|
@param solveMethod What method to use for linear system solving |
|
*/ |
|
LevMarq(InputOutputArray param, LongCallback callback, const Settings& settings = Settings(), InputArray mask = noArray(), |
|
MatrixType matrixType = MatrixType::AUTO, VariableType paramType = VariableType::LINEAR, int nerrs = 0, int solveMethod = DECOMP_SVD); |
|
/** |
|
Creates a solver |
|
|
|
@param param Input/output vector containing starting param vector and resulting optimized params |
|
@param callback Normal callback, produces J^T*J and J^T*b directly instead of J and b, returns true on success |
|
@param settings LevMarq settings structure, see LevMarqBase class for details |
|
@param mask Indicates what variables are fixed during optimization (zeros) and what vars to optimize (non-zeros) |
|
@param matrixType Type of matrix used in the solver; only DENSE and AUTO are supported now |
|
@param paramType Type of optimized parameters; only LINEAR is supported now |
|
@param LtoR Indicates what part of symmetric matrix to copy to another part: lower or upper. Used only with alt. callback |
|
@param solveMethod What method to use for linear system solving |
|
*/ |
|
LevMarq(InputOutputArray param, NormalCallback callback, const Settings& settings = Settings(), InputArray mask = noArray(), |
|
MatrixType matrixType = MatrixType::AUTO, VariableType paramType = VariableType::LINEAR, bool LtoR = false, int solveMethod = DECOMP_SVD); |
|
|
|
/** |
|
Runs Levenberg-Marquadt algorithm using current settings and given parameters vector. |
|
The method returns the optimization report. |
|
*/ |
|
Report optimize(); |
|
|
|
/** @brief Runs optimization using the passed vector of parameters as the start point. |
|
|
|
The final vector of parameters (whether the algorithm converged or not) is stored at the same |
|
vector. |
|
This method can be used instead of the optimize() method if rerun with different start points is required. |
|
The method returns the optimization report. |
|
|
|
@param param initial/final vector of parameters. |
|
|
|
Note that the dimensionality of parameter space is defined by the size of param vector, |
|
and the dimensionality of optimized criteria is defined by the size of err vector |
|
computed by the callback. |
|
*/ |
|
Report run(InputOutputArray param); |
|
|
|
private: |
|
class Impl; |
|
Ptr<Impl> pImpl; |
|
}; |
|
|
|
|
|
/** @example samples/cpp/tutorial_code/features2D/Homography/pose_from_homography.cpp |
|
An example program about pose estimation from coplanar points |
|
|
|
Check @ref tutorial_homography "the corresponding tutorial" for more details |
|
*/ |
|
|
|
/** @brief Finds a perspective transformation between two planes. |
|
|
|
@param srcPoints Coordinates of the points in the original plane, a matrix of the type CV_32FC2 |
|
or vector\<Point2f\> . |
|
@param dstPoints Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or |
|
a vector\<Point2f\> . |
|
@param method Method used to compute a homography matrix. The following methods are possible: |
|
- **0** - a regular method using all the points, i.e., the least squares method |
|
- @ref RANSAC - RANSAC-based robust method |
|
- @ref LMEDS - Least-Median robust method |
|
- @ref RHO - PROSAC-based robust method |
|
@param ransacReprojThreshold Maximum allowed reprojection error to treat a point pair as an inlier |
|
(used in the RANSAC and RHO methods only). That is, if |
|
\f[\| \texttt{dstPoints} _i - \texttt{convertPointsHomogeneous} ( \texttt{H} \cdot \texttt{srcPoints} _i) \|_2 > \texttt{ransacReprojThreshold}\f] |
|
then the point \f$i\f$ is considered as an outlier. If srcPoints and dstPoints are measured in pixels, |
|
it usually makes sense to set this parameter somewhere in the range of 1 to 10. |
|
@param mask Optional output mask set by a robust method ( RANSAC or LMeDS ). Note that the input |
|
mask values are ignored. |
|
@param maxIters The maximum number of RANSAC iterations. |
|
@param confidence Confidence level, between 0 and 1. |
|
|
|
The function finds and returns the perspective transformation \f$H\f$ between the source and the |
|
destination planes: |
|
|
|
\f[s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\f] |
|
|
|
so that the back-projection error |
|
|
|
\f[\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\f] |
|
|
|
is minimized. If the parameter method is set to the default value 0, the function uses all the point |
|
pairs to compute an initial homography estimate with a simple least-squares scheme. |
|
|
|
However, if not all of the point pairs ( \f$srcPoints_i\f$, \f$dstPoints_i\f$ ) fit the rigid perspective |
|
transformation (that is, there are some outliers), this initial estimate will be poor. In this case, |
|
you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different |
|
random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix |
|
using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the |
|
computed homography (which is the number of inliers for RANSAC or the least median re-projection error for |
|
LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and |
|
the mask of inliers/outliers. |
|
|
|
Regardless of the method, robust or not, the computed homography matrix is refined further (using |
|
inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the |
|
re-projection error even more. |
|
|
|
The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to |
|
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works |
|
correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the |
|
noise is rather small, use the default method (method=0). |
|
|
|
The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is |
|
determined up to a scale. Thus, it is normalized so that \f$h_{33}=1\f$. Note that whenever an \f$H\f$ matrix |
|
cannot be estimated, an empty one will be returned. |
|
|
|
@sa |
|
getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective, |
|
perspectiveTransform |
|
*/ |
|
CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints, |
|
int method = 0, double ransacReprojThreshold = 3, |
|
OutputArray mask=noArray(), const int maxIters = 2000, |
|
const double confidence = 0.995); |
|
|
|
/** @overload */ |
|
CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints, |
|
OutputArray mask, int method = 0, double ransacReprojThreshold = 3 ); |
|
|
|
|
|
CV_EXPORTS_W Mat findHomography(InputArray srcPoints, InputArray dstPoints, OutputArray mask, |
|
const UsacParams ¶ms); |
|
|
|
/** @brief Computes an RQ decomposition of 3x3 matrices. |
|
|
|
@param src 3x3 input matrix. |
|
@param mtxR Output 3x3 upper-triangular matrix. |
|
@param mtxQ Output 3x3 orthogonal matrix. |
|
@param Qx Optional output 3x3 rotation matrix around x-axis. |
|
@param Qy Optional output 3x3 rotation matrix around y-axis. |
|
@param Qz Optional output 3x3 rotation matrix around z-axis. |
|
|
|
The function computes a RQ decomposition using the given rotations. This function is used in |
|
#decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera |
|
and a rotation matrix. |
|
|
|
It optionally returns three rotation matrices, one for each axis, and the three Euler angles in |
|
degrees (as the return value) that could be used in OpenGL. Note, there is always more than one |
|
sequence of rotations about the three principal axes that results in the same orientation of an |
|
object, e.g. see @cite Slabaugh . Returned tree rotation matrices and corresponding three Euler angles |
|
are only one of the possible solutions. |
|
*/ |
|
CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ, |
|
OutputArray Qx = noArray(), |
|
OutputArray Qy = noArray(), |
|
OutputArray Qz = noArray()); |
|
|
|
/** @brief Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix. |
|
|
|
@param projMatrix 3x4 input projection matrix P. |
|
@param cameraMatrix Output 3x3 camera intrinsic matrix \f$\cameramatrix{A}\f$. |
|
@param rotMatrix Output 3x3 external rotation matrix R. |
|
@param transVect Output 4x1 translation vector T. |
|
@param rotMatrixX Optional 3x3 rotation matrix around x-axis. |
|
@param rotMatrixY Optional 3x3 rotation matrix around y-axis. |
|
@param rotMatrixZ Optional 3x3 rotation matrix around z-axis. |
|
@param eulerAngles Optional three-element vector containing three Euler angles of rotation in |
|
degrees. |
|
|
|
The function computes a decomposition of a projection matrix into a calibration and a rotation |
|
matrix and the position of a camera. |
|
|
|
It optionally returns three rotation matrices, one for each axis, and three Euler angles that could |
|
be used in OpenGL. Note, there is always more than one sequence of rotations about the three |
|
principal axes that results in the same orientation of an object, e.g. see @cite Slabaugh . Returned |
|
tree rotation matrices and corresponding three Euler angles are only one of the possible solutions. |
|
|
|
The function is based on #RQDecomp3x3 . |
|
*/ |
|
CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray cameraMatrix, |
|
OutputArray rotMatrix, OutputArray transVect, |
|
OutputArray rotMatrixX = noArray(), |
|
OutputArray rotMatrixY = noArray(), |
|
OutputArray rotMatrixZ = noArray(), |
|
OutputArray eulerAngles =noArray() ); |
|
|
|
/** @brief Computes partial derivatives of the matrix product for each multiplied matrix. |
|
|
|
@param A First multiplied matrix. |
|
@param B Second multiplied matrix. |
|
@param dABdA First output derivative matrix d(A\*B)/dA of size |
|
\f$\texttt{A.rows*B.cols} \times {A.rows*A.cols}\f$ . |
|
@param dABdB Second output derivative matrix d(A\*B)/dB of size |
|
\f$\texttt{A.rows*B.cols} \times {B.rows*B.cols}\f$ . |
|
|
|
The function computes partial derivatives of the elements of the matrix product \f$A*B\f$ with regard to |
|
the elements of each of the two input matrices. The function is used to compute the Jacobian |
|
matrices in #stereoCalibrate but can also be used in any other similar optimization function. |
|
*/ |
|
CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB ); |
|
|
|
/** @brief Combines two rotation-and-shift transformations. |
|
|
|
@param rvec1 First rotation vector. |
|
@param tvec1 First translation vector. |
|
@param rvec2 Second rotation vector. |
|
@param tvec2 Second translation vector. |
|
@param rvec3 Output rotation vector of the superposition. |
|
@param tvec3 Output translation vector of the superposition. |
|
@param dr3dr1 Optional output derivative of rvec3 with regard to rvec1 |
|
@param dr3dt1 Optional output derivative of rvec3 with regard to tvec1 |
|
@param dr3dr2 Optional output derivative of rvec3 with regard to rvec2 |
|
@param dr3dt2 Optional output derivative of rvec3 with regard to tvec2 |
|
@param dt3dr1 Optional output derivative of tvec3 with regard to rvec1 |
|
@param dt3dt1 Optional output derivative of tvec3 with regard to tvec1 |
|
@param dt3dr2 Optional output derivative of tvec3 with regard to rvec2 |
|
@param dt3dt2 Optional output derivative of tvec3 with regard to tvec2 |
|
|
|
The functions compute: |
|
|
|
\f[\begin{array}{l} \texttt{rvec3} = \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right ) \\ \texttt{tvec3} = \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \texttt{tvec1} + \texttt{tvec2} \end{array} ,\f] |
|
|
|
where \f$\mathrm{rodrigues}\f$ denotes a rotation vector to a rotation matrix transformation, and |
|
\f$\mathrm{rodrigues}^{-1}\f$ denotes the inverse transformation. See #Rodrigues for details. |
|
|
|
Also, the functions can compute the derivatives of the output vectors with regards to the input |
|
vectors (see #matMulDeriv ). The functions are used inside #stereoCalibrate but can also be used in |
|
your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a |
|
function that contains a matrix multiplication. |
|
*/ |
|
CV_EXPORTS_W void composeRT( InputArray rvec1, InputArray tvec1, |
|
InputArray rvec2, InputArray tvec2, |
|
OutputArray rvec3, OutputArray tvec3, |
|
OutputArray dr3dr1 = noArray(), OutputArray dr3dt1 = noArray(), |
|
OutputArray dr3dr2 = noArray(), OutputArray dr3dt2 = noArray(), |
|
OutputArray dt3dr1 = noArray(), OutputArray dt3dt1 = noArray(), |
|
OutputArray dt3dr2 = noArray(), OutputArray dt3dt2 = noArray() ); |
|
|
|
/** @brief Projects 3D points to an image plane. |
|
|
|
@param objectPoints Array of object points expressed wrt. the world coordinate frame. A 3xN/Nx3 |
|
1-channel or 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is the number of points in the view. |
|
@param rvec The rotation vector (@ref Rodrigues) that, together with tvec, performs a change of |
|
basis from world to camera coordinate system, see @ref calibrateCamera for details. |
|
@param tvec The translation vector, see parameter description above. |
|
@param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ . |
|
@param distCoeffs Input vector of distortion coefficients |
|
\f$\distcoeffs\f$ . If the vector is empty, the zero distortion coefficients are assumed. |
|
@param imagePoints Output array of image points, 1xN/Nx1 2-channel, or |
|
vector\<Point2f\> . |
|
@param jacobian Optional output 2Nx(10+\<numDistCoeffs\>) jacobian matrix of derivatives of image |
|
points with respect to components of the rotation vector, translation vector, focal lengths, |
|
coordinates of the principal point and the distortion coefficients. In the old interface different |
|
components of the jacobian are returned via different output parameters. |
|
@param aspectRatio Optional "fixed aspect ratio" parameter. If the parameter is not 0, the |
|
function assumes that the aspect ratio (\f$f_x / f_y\f$) is fixed and correspondingly adjusts the |
|
jacobian matrix. |
|
|
|
The function computes the 2D projections of 3D points to the image plane, given intrinsic and |
|
extrinsic camera parameters. Optionally, the function computes Jacobians -matrices of partial |
|
derivatives of image points coordinates (as functions of all the input parameters) with respect to |
|
the particular parameters, intrinsic and/or extrinsic. The Jacobians are used during the global |
|
optimization in @ref calibrateCamera, @ref solvePnP, and @ref stereoCalibrate. The function itself |
|
can also be used to compute a re-projection error, given the current intrinsic and extrinsic |
|
parameters. |
|
|
|
@note By setting rvec = tvec = \f$[0, 0, 0]\f$, or by setting cameraMatrix to a 3x3 identity matrix, |
|
or by passing zero distortion coefficients, one can get various useful partial cases of the |
|
function. This means, one can compute the distorted coordinates for a sparse set of points or apply |
|
a perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup. |
|
*/ |
|
CV_EXPORTS_W void projectPoints( InputArray objectPoints, |
|
InputArray rvec, InputArray tvec, |
|
InputArray cameraMatrix, InputArray distCoeffs, |
|
OutputArray imagePoints, |
|
OutputArray jacobian = noArray(), |
|
double aspectRatio = 0); |
|
|
|
/** @overload */ |
|
CV_EXPORTS_AS(projectPointsSepJ) void projectPoints( |
|
InputArray objectPoints, |
|
InputArray rvec, InputArray tvec, |
|
InputArray cameraMatrix, InputArray distCoeffs, |
|
OutputArray imagePoints, OutputArray dpdr, |
|
OutputArray dpdt, OutputArray dpdf=noArray(), |
|
OutputArray dpdc=noArray(), OutputArray dpdk=noArray(), |
|
OutputArray dpdo=noArray(), double aspectRatio=0.); |
|
|
|
/** @example samples/cpp/tutorial_code/features2D/Homography/homography_from_camera_displacement.cpp |
|
An example program about homography from the camera displacement |
|
|
|
Check @ref tutorial_homography "the corresponding tutorial" for more details |
|
*/ |
|
|
|
/** @brief Finds an object pose from 3D-2D point correspondences. |
|
|
|
@see @ref calib3d_solvePnP |
|
|
|
This function returns the rotation and the translation vectors that transform a 3D point expressed in the object |
|
coordinate frame to the camera coordinate frame, using different methods: |
|
- P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): need 4 input points to return a unique solution. |
|
- @ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar. |
|
- @ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation. |
|
Number of input points must be 4. Object points must be defined in the following order: |
|
- point 0: [-squareLength / 2, squareLength / 2, 0] |
|
- point 1: [ squareLength / 2, squareLength / 2, 0] |
|
- point 2: [ squareLength / 2, -squareLength / 2, 0] |
|
- point 3: [-squareLength / 2, -squareLength / 2, 0] |
|
- for all the other flags, number of input points must be >= 4 and object points can be in any configuration. |
|
|
|
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or |
|
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here. |
|
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel, |
|
where N is the number of points. vector\<Point2d\> can be also passed here. |
|
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ . |
|
@param distCoeffs Input vector of distortion coefficients |
|
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are |
|
assumed. |
|
@param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from |
|
the model coordinate system to the camera coordinate system. |
|
@param tvec Output translation vector. |
|
@param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses |
|
the provided rvec and tvec values as initial approximations of the rotation and translation |
|
vectors, respectively, and further optimizes them. |
|
@param flags Method for solving a PnP problem: see @ref calib3d_solvePnP_flags |
|
|
|
More information about Perspective-n-Points is described in @ref calib3d_solvePnP |
|
|
|
@note |
|
- An example of how to use solvePnP for planar augmented reality can be found at |
|
opencv_source_code/samples/python/plane_ar.py |
|
- If you are using Python: |
|
- Numpy array slices won't work as input because solvePnP requires contiguous |
|
arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of |
|
modules/3d/src/solvepnp.cpp version 2.4.9) |
|
- The P3P algorithm requires image points to be in an array of shape (N,1,2) due |
|
to its calling of #undistortPoints (around line 75 of modules/3d/src/solvepnp.cpp version 2.4.9) |
|
which requires 2-channel information. |
|
- Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of |
|
it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints = |
|
np.ascontiguousarray(D[:,:2]).reshape((N,1,2)) |
|
- The methods @ref SOLVEPNP_DLS and @ref SOLVEPNP_UPNP cannot be used as the current implementations are |
|
unstable and sometimes give completely wrong results. If you pass one of these two |
|
flags, @ref SOLVEPNP_EPNP method will be used instead. |
|
- The minimum number of points is 4 in the general case. In the case of @ref SOLVEPNP_P3P and @ref SOLVEPNP_AP3P |
|
methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions |
|
of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error). |
|
- With @ref SOLVEPNP_ITERATIVE method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points |
|
are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the |
|
global solution to converge. |
|
- With @ref SOLVEPNP_IPPE input points must be >= 4 and object points must be coplanar. |
|
- With @ref SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation. |
|
Number of input points must be 4. Object points must be defined in the following order: |
|
- point 0: [-squareLength / 2, squareLength / 2, 0] |
|
- point 1: [ squareLength / 2, squareLength / 2, 0] |
|
- point 2: [ squareLength / 2, -squareLength / 2, 0] |
|
- point 3: [-squareLength / 2, -squareLength / 2, 0] |
|
- With @ref SOLVEPNP_SQPNP input points must be >= 3 |
|
*/ |
|
CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints, |
|
InputArray cameraMatrix, InputArray distCoeffs, |
|
OutputArray rvec, OutputArray tvec, |
|
bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE ); |
|
|
|
/** @brief Finds an object pose from 3D-2D point correspondences using the RANSAC scheme. |
|
|
|
@see @ref calib3d_solvePnP |
|
|
|
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or |
|
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here. |
|
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel, |
|
where N is the number of points. vector\<Point2d\> can be also passed here. |
|
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ . |
|
@param distCoeffs Input vector of distortion coefficients |
|
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are |
|
assumed. |
|
@param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from |
|
the model coordinate system to the camera coordinate system. |
|
@param tvec Output translation vector. |
|
@param useExtrinsicGuess Parameter used for @ref SOLVEPNP_ITERATIVE. If true (1), the function uses |
|
the provided rvec and tvec values as initial approximations of the rotation and translation |
|
vectors, respectively, and further optimizes them. |
|
@param iterationsCount Number of iterations. |
|
@param reprojectionError Inlier threshold value used by the RANSAC procedure. The parameter value |
|
is the maximum allowed distance between the observed and computed point projections to consider it |
|
an inlier. |
|
@param confidence The probability that the algorithm produces a useful result. |
|
@param inliers Output vector that contains indices of inliers in objectPoints and imagePoints . |
|
@param flags Method for solving a PnP problem (see @ref solvePnP ). |
|
|
|
The function estimates an object pose given a set of object points, their corresponding image |
|
projections, as well as the camera intrinsic matrix and the distortion coefficients. This function finds such |
|
a pose that minimizes reprojection error, that is, the sum of squared distances between the observed |
|
projections imagePoints and the projected (using @ref projectPoints ) objectPoints. The use of RANSAC |
|
makes the function resistant to outliers. |
|
|
|
@note |
|
- An example of how to use solvePNPRansac for object detection can be found at |
|
opencv_source_code/samples/cpp/tutorial_code/3d/real_time_pose_estimation/ |
|
- The default method used to estimate the camera pose for the Minimal Sample Sets step |
|
is #SOLVEPNP_EPNP. Exceptions are: |
|
- if you choose #SOLVEPNP_P3P or #SOLVEPNP_AP3P, these methods will be used. |
|
- if the number of input points is equal to 4, #SOLVEPNP_P3P is used. |
|
- The method used to estimate the camera pose using all the inliers is defined by the |
|
flags parameters unless it is equal to #SOLVEPNP_P3P or #SOLVEPNP_AP3P. In this case, |
|
the method #SOLVEPNP_EPNP will be used instead. |
|
*/ |
|
CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints, |
|
InputArray cameraMatrix, InputArray distCoeffs, |
|
OutputArray rvec, OutputArray tvec, |
|
bool useExtrinsicGuess = false, int iterationsCount = 100, |
|
float reprojectionError = 8.0, double confidence = 0.99, |
|
OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE ); |
|
|
|
/* |
|
Finds rotation and translation vector. |
|
If cameraMatrix is given then run P3P. Otherwise run linear P6P and output cameraMatrix too. |
|
*/ |
|
CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints, |
|
InputOutputArray cameraMatrix, InputArray distCoeffs, |
|
OutputArray rvec, OutputArray tvec, OutputArray inliers, |
|
const UsacParams ¶ms=UsacParams()); |
|
|
|
/** @brief Finds an object pose from 3 3D-2D point correspondences. |
|
|
|
@see @ref calib3d_solvePnP |
|
|
|
@param objectPoints Array of object points in the object coordinate space, 3x3 1-channel or |
|
1x3/3x1 3-channel. vector\<Point3f\> can be also passed here. |
|
@param imagePoints Array of corresponding image points, 3x2 1-channel or 1x3/3x1 2-channel. |
|
vector\<Point2f\> can be also passed here. |
|
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ . |
|
@param distCoeffs Input vector of distortion coefficients |
|
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are |
|
assumed. |
|
@param rvecs Output rotation vectors (see @ref Rodrigues ) that, together with tvecs, brings points from |
|
the model coordinate system to the camera coordinate system. A P3P problem has up to 4 solutions. |
|
@param tvecs Output translation vectors. |
|
@param flags Method for solving a P3P problem: |
|
- @ref SOLVEPNP_P3P Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang |
|
"Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete). |
|
- @ref SOLVEPNP_AP3P Method is based on the paper of T. Ke and S. Roumeliotis. |
|
"An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17). |
|
|
|
The function estimates the object pose given 3 object points, their corresponding image |
|
projections, as well as the camera intrinsic matrix and the distortion coefficients. |
|
|
|
@note |
|
The solutions are sorted by reprojection errors (lowest to highest). |
|
*/ |
|
CV_EXPORTS_W int solveP3P( InputArray objectPoints, InputArray imagePoints, |
|
InputArray cameraMatrix, InputArray distCoeffs, |
|
OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, |
|
int flags ); |
|
|
|
/** @brief Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame |
|
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution. |
|
|
|
@see @ref calib3d_solvePnP |
|
|
|
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel, |
|
where N is the number of points. vector\<Point3d\> can also be passed here. |
|
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel, |
|
where N is the number of points. vector\<Point2d\> can also be passed here. |
|
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ . |
|
@param distCoeffs Input vector of distortion coefficients |
|
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are |
|
assumed. |
|
@param rvec Input/Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from |
|
the model coordinate system to the camera coordinate system. Input values are used as an initial solution. |
|
@param tvec Input/Output translation vector. Input values are used as an initial solution. |
|
@param criteria Criteria when to stop the Levenberg-Marquard iterative algorithm. |
|
|
|
The function refines the object pose given at least 3 object points, their corresponding image |
|
projections, an initial solution for the rotation and translation vector, |
|
as well as the camera intrinsic matrix and the distortion coefficients. |
|
The function minimizes the projection error with respect to the rotation and the translation vectors, according |
|
to a Levenberg-Marquardt iterative minimization @cite Madsen04 @cite Eade13 process. |
|
*/ |
|
CV_EXPORTS_W void solvePnPRefineLM( InputArray objectPoints, InputArray imagePoints, |
|
InputArray cameraMatrix, InputArray distCoeffs, |
|
InputOutputArray rvec, InputOutputArray tvec, |
|
TermCriteria criteria = TermCriteria(TermCriteria::EPS + |
|
TermCriteria::COUNT, 20, FLT_EPSILON)); |
|
|
|
/** @brief Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame |
|
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution. |
|
|
|
@see @ref calib3d_solvePnP |
|
|
|
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel, |
|
where N is the number of points. vector\<Point3d\> can also be passed here. |
|
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel, |
|
where N is the number of points. vector\<Point2d\> can also be passed here. |
|
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ . |
|
@param distCoeffs Input vector of distortion coefficients |
|
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are |
|
assumed. |
|
@param rvec Input/Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from |
|
the model coordinate system to the camera coordinate system. Input values are used as an initial solution. |
|
@param tvec Input/Output translation vector. Input values are used as an initial solution. |
|
@param criteria Criteria when to stop the Levenberg-Marquard iterative algorithm. |
|
@param VVSlambda Gain for the virtual visual servoing control law, equivalent to the \f$\alpha\f$ |
|
gain in the Damped Gauss-Newton formulation. |
|
|
|
The function refines the object pose given at least 3 object points, their corresponding image |
|
projections, an initial solution for the rotation and translation vector, |
|
as well as the camera intrinsic matrix and the distortion coefficients. |
|
The function minimizes the projection error with respect to the rotation and the translation vectors, using a |
|
virtual visual servoing (VVS) @cite Chaumette06 @cite Marchand16 scheme. |
|
*/ |
|
CV_EXPORTS_W void solvePnPRefineVVS( InputArray objectPoints, InputArray imagePoints, |
|
InputArray cameraMatrix, InputArray distCoeffs, |
|
InputOutputArray rvec, InputOutputArray tvec, |
|
TermCriteria criteria = TermCriteria(TermCriteria::EPS + |
|
TermCriteria::COUNT, 20, FLT_EPSILON), |
|
double VVSlambda = 1); |
|
|
|
/** @brief Finds an object pose from 3D-2D point correspondences. |
|
|
|
@see @ref calib3d_solvePnP |
|
|
|
This function returns a list of all the possible solutions (a solution is a <rotation vector, translation vector> |
|
couple), depending on the number of input points and the chosen method: |
|
- P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): 3 or 4 input points. Number of returned solutions can be between 0 and 4 with 3 input points. |
|
- @ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar. Returns 2 solutions. |
|
- @ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation. |
|
Number of input points must be 4 and 2 solutions are returned. Object points must be defined in the following order: |
|
- point 0: [-squareLength / 2, squareLength / 2, 0] |
|
- point 1: [ squareLength / 2, squareLength / 2, 0] |
|
- point 2: [ squareLength / 2, -squareLength / 2, 0] |
|
- point 3: [-squareLength / 2, -squareLength / 2, 0] |
|
- for all the other flags, number of input points must be >= 4 and object points can be in any configuration. |
|
Only 1 solution is returned. |
|
|
|
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or |
|
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here. |
|
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel, |
|
where N is the number of points. vector\<Point2d\> can be also passed here. |
|
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ . |
|
@param distCoeffs Input vector of distortion coefficients |
|
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are |
|
assumed. |
|
@param rvecs Vector of output rotation vectors (see @ref Rodrigues ) that, together with tvecs, brings points from |
|
the model coordinate system to the camera coordinate system. |
|
@param tvecs Vector of output translation vectors. |
|
@param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses |
|
the provided rvec and tvec values as initial approximations of the rotation and translation |
|
vectors, respectively, and further optimizes them. |
|
@param flags Method for solving a PnP problem: see @ref calib3d_solvePnP_flags |
|
@param rvec Rotation vector used to initialize an iterative PnP refinement algorithm, when flag is @ref SOLVEPNP_ITERATIVE |
|
and useExtrinsicGuess is set to true. |
|
@param tvec Translation vector used to initialize an iterative PnP refinement algorithm, when flag is @ref SOLVEPNP_ITERATIVE |
|
and useExtrinsicGuess is set to true. |
|
@param reprojectionError Optional vector of reprojection error, that is the RMS error |
|
(\f$ \text{RMSE} = \sqrt{\frac{\sum_{i}^{N} \left ( \hat{y_i} - y_i \right )^2}{N}} \f$) between the input image points |
|
and the 3D object points projected with the estimated pose. |
|
|
|
More information is described in @ref calib3d_solvePnP |
|
|
|
@note |
|
- An example of how to use solvePnP for planar augmented reality can be found at |
|
opencv_source_code/samples/python/plane_ar.py |
|
- If you are using Python: |
|
- Numpy array slices won't work as input because solvePnP requires contiguous |
|
arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of |
|
modules/3d/src/solvepnp.cpp version 2.4.9) |
|
- The P3P algorithm requires image points to be in an array of shape (N,1,2) due |
|
to its calling of #undistortPoints (around line 75 of modules/3d/src/solvepnp.cpp version 2.4.9) |
|
which requires 2-channel information. |
|
- Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of |
|
it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints = |
|
np.ascontiguousarray(D[:,:2]).reshape((N,1,2)) |
|
- The methods @ref SOLVEPNP_DLS and @ref SOLVEPNP_UPNP cannot be used as the current implementations are |
|
unstable and sometimes give completely wrong results. If you pass one of these two |
|
flags, @ref SOLVEPNP_EPNP method will be used instead. |
|
- The minimum number of points is 4 in the general case. In the case of @ref SOLVEPNP_P3P and @ref SOLVEPNP_AP3P |
|
methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions |
|
of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error). |
|
- With @ref SOLVEPNP_ITERATIVE method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points |
|
are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the |
|
global solution to converge. |
|
- With @ref SOLVEPNP_IPPE input points must be >= 4 and object points must be coplanar. |
|
- With @ref SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation. |
|
Number of input points must be 4. Object points must be defined in the following order: |
|
- point 0: [-squareLength / 2, squareLength / 2, 0] |
|
- point 1: [ squareLength / 2, squareLength / 2, 0] |
|
- point 2: [ squareLength / 2, -squareLength / 2, 0] |
|
- point 3: [-squareLength / 2, -squareLength / 2, 0] |
|
*/ |
|
CV_EXPORTS_W int solvePnPGeneric( InputArray objectPoints, InputArray imagePoints, |
|
InputArray cameraMatrix, InputArray distCoeffs, |
|
OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, |
|
bool useExtrinsicGuess = false, |
|
int flags = SOLVEPNP_ITERATIVE, |
|
InputArray rvec = noArray(), InputArray tvec = noArray(), |
|
OutputArray reprojectionError = noArray() ); |
|
|
|
/** @brief Draw axes of the world/object coordinate system from pose estimation. @sa solvePnP |
|
|
|
@param image Input/output image. It must have 1 or 3 channels. The number of channels is not altered. |
|
@param cameraMatrix Input 3x3 floating-point matrix of camera intrinsic parameters. |
|
\f$\cameramatrix{A}\f$ |
|
@param distCoeffs Input vector of distortion coefficients |
|
\f$\distcoeffs\f$. If the vector is empty, the zero distortion coefficients are assumed. |
|
@param rvec Rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from |
|
the model coordinate system to the camera coordinate system. |
|
@param tvec Translation vector. |
|
@param length Length of the painted axes in the same unit than tvec (usually in meters). |
|
@param thickness Line thickness of the painted axes. |
|
|
|
This function draws the axes of the world/object coordinate system w.r.t. to the camera frame. |
|
OX is drawn in red, OY in green and OZ in blue. |
|
*/ |
|
CV_EXPORTS_W void drawFrameAxes(InputOutputArray image, InputArray cameraMatrix, InputArray distCoeffs, |
|
InputArray rvec, InputArray tvec, float length, int thickness=3); |
|
|
|
/** @brief Converts points from Euclidean to homogeneous space. |
|
|
|
@param src Input vector of N-dimensional points. |
|
@param dst Output vector of N+1-dimensional points. |
|
@param dtype The desired output array depth (either CV_32F or CV_64F are currently supported). |
|
If it's -1, then it's set automatically to CV_32F or CV_64F, depending on the input depth. |
|
|
|
The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of |
|
point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1). |
|
*/ |
|
CV_EXPORTS_W void convertPointsToHomogeneous( InputArray src, OutputArray dst, int dtype=-1 ); |
|
|
|
/** @brief Converts points from homogeneous to Euclidean space. |
|
|
|
@param src Input vector of N-dimensional points. |
|
@param dst Output vector of N-1-dimensional points. |
|
@param dtype The desired output array depth (either CV_32F or CV_64F are currently supported). |
|
If it's -1, then it's set automatically to CV_32F or CV_64F, depending on the input depth. |
|
|
|
The function converts points homogeneous to Euclidean space using perspective projection. That is, |
|
each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the |
|
output point coordinates will be (0,0,0,...). |
|
*/ |
|
CV_EXPORTS_W void convertPointsFromHomogeneous( InputArray src, OutputArray dst, int dtype=-1 ); |
|
|
|
/** @brief Converts points to/from homogeneous coordinates. |
|
|
|
@param src Input array or vector of 2D, 3D, or 4D points. |
|
@param dst Output vector of 2D, 3D, or 4D points. |
|
|
|
The function converts 2D or 3D points from/to homogeneous coordinates by calling either |
|
#convertPointsToHomogeneous or #convertPointsFromHomogeneous. |
|
|
|
@note The function is obsolete. Use one of the previous two functions instead. |
|
*/ |
|
CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst ); |
|
|
|
/** @brief Calculates a fundamental matrix from the corresponding points in two images. |
|
|
|
@param points1 Array of N points from the first image. The point coordinates should be |
|
floating-point (single or double precision). |
|
@param points2 Array of the second image points of the same size and format as points1 . |
|
@param method Method for computing a fundamental matrix. |
|
- @ref FM_7POINT for a 7-point algorithm. \f$N = 7\f$ |
|
- @ref FM_8POINT for an 8-point algorithm. \f$N \ge 8\f$ |
|
- @ref FM_RANSAC for the RANSAC algorithm. \f$N \ge 8\f$ |
|
- @ref FM_LMEDS for the LMedS algorithm. \f$N \ge 8\f$ |
|
@param ransacReprojThreshold Parameter used only for RANSAC. It is the maximum distance from a point to an epipolar |
|
line in pixels, beyond which the point is considered an outlier and is not used for computing the |
|
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the |
|
point localization, image resolution, and the image noise. |
|
@param confidence Parameter used for the RANSAC and LMedS methods only. It specifies a desirable level |
|
of confidence (probability) that the estimated matrix is correct. |
|
@param[out] mask optional output mask |
|
@param maxIters The maximum number of robust method iterations. |
|
|
|
The epipolar geometry is described by the following equation: |
|
|
|
\f[[p_2; 1]^T F [p_1; 1] = 0\f] |
|
|
|
where \f$F\f$ is a fundamental matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the |
|
second images, respectively. |
|
|
|
The function calculates the fundamental matrix using one of four methods listed above and returns |
|
the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point |
|
algorithm, the function may return up to 3 solutions ( \f$9 \times 3\f$ matrix that stores all 3 |
|
matrices sequentially). |
|
|
|
The calculated fundamental matrix may be passed further to #computeCorrespondEpilines that finds the |
|
epipolar lines corresponding to the specified points. It can also be passed to |
|
#stereoRectifyUncalibrated to compute the rectification transformation. : |
|
@code |
|
// Example. Estimation of fundamental matrix using the RANSAC algorithm |
|
int point_count = 100; |
|
vector<Point2f> points1(point_count); |
|
vector<Point2f> points2(point_count); |
|
|
|
// initialize the points here ... |
|
for( int i = 0; i < point_count; i++ ) |
|
{ |
|
points1[i] = ...; |
|
points2[i] = ...; |
|
} |
|
|
|
Mat fundamental_matrix = |
|
findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99); |
|
@endcode |
|
*/ |
|
CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2, |
|
int method, double ransacReprojThreshold, double confidence, |
|
int maxIters, OutputArray mask = noArray() ); |
|
|
|
/** @overload */ |
|
CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2, |
|
int method = FM_RANSAC, |
|
double ransacReprojThreshold = 3., double confidence = 0.99, |
|
OutputArray mask = noArray() ); |
|
|
|
/** @overload */ |
|
CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2, |
|
OutputArray mask, int method = FM_RANSAC, |
|
double ransacReprojThreshold = 3., double confidence = 0.99 ); |
|
|
|
|
|
CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2, |
|
OutputArray mask, const UsacParams ¶ms); |
|
|
|
/** @brief Calculates an essential matrix from the corresponding points in two images. |
|
|
|
@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should |
|
be floating-point (single or double precision). |
|
@param points2 Array of the second image points of the same size and format as points1 . |
|
@param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ . |
|
Note that this function assumes that points1 and points2 are feature points from cameras with the |
|
same camera intrinsic matrix. If this assumption does not hold for your use case, use |
|
#undistortPoints with `P = cv::NoArray()` for both cameras to transform image points |
|
to normalized image coordinates, which are valid for the identity camera intrinsic matrix. When |
|
passing these coordinates, pass the identity matrix for this parameter. |
|
@param method Method for computing an essential matrix. |
|
- @ref RANSAC for the RANSAC algorithm. |
|
- @ref LMEDS for the LMedS algorithm. |
|
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of |
|
confidence (probability) that the estimated matrix is correct. |
|
@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar |
|
line in pixels, beyond which the point is considered an outlier and is not used for computing the |
|
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the |
|
point localization, image resolution, and the image noise. |
|
@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1 |
|
for the other points. The array is computed only in the RANSAC and LMedS methods. |
|
@param maxIters The maximum number of robust method iterations. |
|
|
|
This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 . |
|
@cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation: |
|
|
|
\f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f] |
|
|
|
where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the |
|
second images, respectively. The result of this function may be passed further to |
|
#decomposeEssentialMat or #recoverPose to recover the relative pose between cameras. |
|
*/ |
|
CV_EXPORTS_W |
|
Mat findEssentialMat( |
|
InputArray points1, InputArray points2, |
|
InputArray cameraMatrix, int method = RANSAC, |
|
double prob = 0.999, double threshold = 1.0, |
|
int maxIters = 1000, OutputArray mask = noArray() |
|
); |
|
|
|
/** @overload |
|
@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should |
|
be floating-point (single or double precision). |
|
@param points2 Array of the second image points of the same size and format as points1 . |
|
@param focal focal length of the camera. Note that this function assumes that points1 and points2 |
|
are feature points from cameras with same focal length and principal point. |
|
@param pp principal point of the camera. |
|
@param method Method for computing a fundamental matrix. |
|
- @ref RANSAC for the RANSAC algorithm. |
|
- @ref LMEDS for the LMedS algorithm. |
|
@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar |
|
line in pixels, beyond which the point is considered an outlier and is not used for computing the |
|
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the |
|
point localization, image resolution, and the image noise. |
|
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of |
|
confidence (probability) that the estimated matrix is correct. |
|
@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1 |
|
for the other points. The array is computed only in the RANSAC and LMedS methods. |
|
@param maxIters The maximum number of robust method iterations. |
|
|
|
This function differs from the one above that it computes camera intrinsic matrix from focal length and |
|
principal point: |
|
|
|
\f[A = |
|
\begin{bmatrix} |
|
f & 0 & x_{pp} \\ |
|
0 & f & y_{pp} \\ |
|
0 & 0 & 1 |
|
\end{bmatrix}\f] |
|
*/ |
|
CV_EXPORTS_W |
|
Mat findEssentialMat( |
|
InputArray points1, InputArray points2, |
|
double focal = 1.0, Point2d pp = Point2d(0, 0), |
|
int method = RANSAC, double prob = 0.999, |
|
double threshold = 1.0, int maxIters = 1000, |
|
OutputArray mask = noArray() |
|
); |
|
|
|
/** @brief Calculates an essential matrix from the corresponding points in two images from potentially two different cameras. |
|
|
|
@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should |
|
be floating-point (single or double precision). |
|
@param points2 Array of the second image points of the same size and format as points1 . |
|
@param cameraMatrix1 Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . |
|
Note that this function assumes that points1 and points2 are feature points from cameras with the |
|
same camera matrix. If this assumption does not hold for your use case, use |
|
#undistortPoints with `P = cv::NoArray()` for both cameras to transform image points |
|
to normalized image coordinates, which are valid for the identity camera matrix. When |
|
passing these coordinates, pass the identity matrix for this parameter. |
|
@param cameraMatrix2 Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . |
|
Note that this function assumes that points1 and points2 are feature points from cameras with the |
|
same camera matrix. If this assumption does not hold for your use case, use |
|
#undistortPoints with `P = cv::NoArray()` for both cameras to transform image points |
|
to normalized image coordinates, which are valid for the identity camera matrix. When |
|
passing these coordinates, pass the identity matrix for this parameter. |
|
@param distCoeffs1 Input vector of distortion coefficients |
|
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ |
|
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed. |
|
@param distCoeffs2 Input vector of distortion coefficients |
|
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ |
|
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed. |
|
@param method Method for computing an essential matrix. |
|
- @ref RANSAC for the RANSAC algorithm. |
|
- @ref LMEDS for the LMedS algorithm. |
|
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of |
|
confidence (probability) that the estimated matrix is correct. |
|
@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar |
|
line in pixels, beyond which the point is considered an outlier and is not used for computing the |
|
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the |
|
point localization, image resolution, and the image noise. |
|
@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1 |
|
for the other points. The array is computed only in the RANSAC and LMedS methods. |
|
|
|
This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 . |
|
@cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation: |
|
|
|
\f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f] |
|
|
|
where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the |
|
second images, respectively. The result of this function may be passed further to |
|
#decomposeEssentialMat or #recoverPose to recover the relative pose between cameras. |
|
*/ |
|
CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2, |
|
InputArray cameraMatrix1, InputArray distCoeffs1, |
|
InputArray cameraMatrix2, InputArray distCoeffs2, |
|
int method = RANSAC, |
|
double prob = 0.999, double threshold = 1.0, |
|
OutputArray mask = noArray() ); |
|
|
|
|
|
CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2, |
|
InputArray cameraMatrix1, InputArray cameraMatrix2, |
|
InputArray dist_coeff1, InputArray dist_coeff2, OutputArray mask, |
|
const UsacParams ¶ms); |
|
|
|
/** @brief Decompose an essential matrix to possible rotations and translation. |
|
|
|
@param E The input essential matrix. |
|
@param R1 One possible rotation matrix. |
|
@param R2 Another possible rotation matrix. |
|
@param t One possible translation. |
|
|
|
This function decomposes the essential matrix E using svd decomposition @cite HartleyZ00. In |
|
general, four possible poses exist for the decomposition of E. They are \f$[R_1, t]\f$, |
|
\f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$. |
|
|
|
If E gives the epipolar constraint \f$[p_2; 1]^T A^{-T} E A^{-1} [p_1; 1] = 0\f$ between the image |
|
points \f$p_1\f$ in the first image and \f$p_2\f$ in second image, then any of the tuples |
|
\f$[R_1, t]\f$, \f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$ is a change of basis from the first |
|
camera's coordinate system to the second camera's coordinate system. However, by decomposing E, one |
|
can only get the direction of the translation. For this reason, the translation t is returned with |
|
unit length. |
|
*/ |
|
CV_EXPORTS_W void decomposeEssentialMat( InputArray E, OutputArray R1, OutputArray R2, OutputArray t ); |
|
|
|
/** @brief Recovers the relative camera rotation and the translation from corresponding points in two images from two different cameras, using chirality check. Returns the number of |
|
inliers that pass the check. |
|
|
|
@param points1 Array of N 2D points from the first image. The point coordinates should be |
|
floating-point (single or double precision). |
|
@param points2 Array of the second image points of the same size and format as points1 . |
|
@param cameraMatrix1 Input/output camera matrix for the first camera, the same as in |
|
@ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below. |
|
@param distCoeffs1 Input/output vector of distortion coefficients, the same as in |
|
@ref calibrateCamera. |
|
@param cameraMatrix2 Input/output camera matrix for the first camera, the same as in |
|
@ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below. |
|
@param distCoeffs2 Input/output vector of distortion coefficients, the same as in |
|
@ref calibrateCamera. |
|
@param E The output essential matrix. |
|
@param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple |
|
that performs a change of basis from the first camera's coordinate system to the second camera's |
|
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter |
|
described below. |
|
@param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and |
|
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit |
|
length. |
|
@param method Method for computing an essential matrix. |
|
- @ref RANSAC for the RANSAC algorithm. |
|
- @ref LMEDS for the LMedS algorithm. |
|
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of |
|
confidence (probability) that the estimated matrix is correct. |
|
@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar |
|
line in pixels, beyond which the point is considered an outlier and is not used for computing the |
|
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the |
|
point localization, image resolution, and the image noise. |
|
@param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks |
|
inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to |
|
recover pose. In the output mask only inliers which pass the chirality check. |
|
|
|
This function decomposes an essential matrix using @ref decomposeEssentialMat and then verifies |
|
possible pose hypotheses by doing chirality check. The chirality check means that the |
|
triangulated 3D points should have positive depth. Some details can be found in @cite Nister03. |
|
|
|
This function can be used to process the output E and mask from @ref findEssentialMat. In this |
|
scenario, points1 and points2 are the same input for findEssentialMat.: |
|
@code |
|
// Example. Estimation of fundamental matrix using the RANSAC algorithm |
|
int point_count = 100; |
|
vector<Point2f> points1(point_count); |
|
vector<Point2f> points2(point_count); |
|
|
|
// initialize the points here ... |
|
for( int i = 0; i < point_count; i++ ) |
|
{ |
|
points1[i] = ...; |
|
points2[i] = ...; |
|
} |
|
|
|
// Input: camera calibration of both cameras, for example using intrinsic chessboard calibration. |
|
Mat cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2; |
|
|
|
// Output: Essential matrix, relative rotation and relative translation. |
|
Mat E, R, t, mask; |
|
|
|
recoverPose(points1, points2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, E, R, t, mask); |
|
@endcode |
|
*/ |
|
CV_EXPORTS_W int recoverPose( InputArray points1, InputArray points2, |
|
InputArray cameraMatrix1, InputArray distCoeffs1, |
|
InputArray cameraMatrix2, InputArray distCoeffs2, |
|
OutputArray E, OutputArray R, OutputArray t, |
|
int method = cv::RANSAC, double prob = 0.999, double threshold = 1.0, |
|
InputOutputArray mask = noArray()); |
|
|
|
/** @brief Recovers the relative camera rotation and the translation from an estimated essential |
|
matrix and the corresponding points in two images, using chirality check. Returns the number of |
|
inliers that pass the check. |
|
|
|
@param E The input essential matrix. |
|
@param points1 Array of N 2D points from the first image. The point coordinates should be |
|
floating-point (single or double precision). |
|
@param points2 Array of the second image points of the same size and format as points1 . |
|
@param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ . |
|
Note that this function assumes that points1 and points2 are feature points from cameras with the |
|
same camera intrinsic matrix. |
|
@param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple |
|
that performs a change of basis from the first camera's coordinate system to the second camera's |
|
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter |
|
described below. |
|
@param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and |
|
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit |
|
length. |
|
@param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks |
|
inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to |
|
recover pose. In the output mask only inliers which pass the chirality check. |
|
|
|
This function decomposes an essential matrix using @ref decomposeEssentialMat and then verifies |
|
possible pose hypotheses by doing chirality check. The chirality check means that the |
|
triangulated 3D points should have positive depth. Some details can be found in @cite Nister03. |
|
|
|
This function can be used to process the output E and mask from @ref findEssentialMat. In this |
|
scenario, points1 and points2 are the same input for #findEssentialMat : |
|
@code |
|
// Example. Estimation of fundamental matrix using the RANSAC algorithm |
|
int point_count = 100; |
|
vector<Point2f> points1(point_count); |
|
vector<Point2f> points2(point_count); |
|
|
|
// initialize the points here ... |
|
for( int i = 0; i < point_count; i++ ) |
|
{ |
|
points1[i] = ...; |
|
points2[i] = ...; |
|
} |
|
|
|
// cametra matrix with both focal lengths = 1, and principal point = (0, 0) |
|
Mat cameraMatrix = Mat::eye(3, 3, CV_64F); |
|
|
|
Mat E, R, t, mask; |
|
|
|
E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask); |
|
recoverPose(E, points1, points2, cameraMatrix, R, t, mask); |
|
@endcode |
|
*/ |
|
CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2, |
|
InputArray cameraMatrix, OutputArray R, OutputArray t, |
|
InputOutputArray mask = noArray() ); |
|
|
|
/** @overload |
|
@param E The input essential matrix. |
|
@param points1 Array of N 2D points from the first image. The point coordinates should be |
|
floating-point (single or double precision). |
|
@param points2 Array of the second image points of the same size and format as points1 . |
|
@param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple |
|
that performs a change of basis from the first camera's coordinate system to the second camera's |
|
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter |
|
description below. |
|
@param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and |
|
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit |
|
length. |
|
@param focal Focal length of the camera. Note that this function assumes that points1 and points2 |
|
are feature points from cameras with same focal length and principal point. |
|
@param pp principal point of the camera. |
|
@param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks |
|
inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to |
|
recover pose. In the output mask only inliers which pass the chirality check. |
|
|
|
This function differs from the one above that it computes camera intrinsic matrix from focal length and |
|
principal point: |
|
|
|
\f[A = |
|
\begin{bmatrix} |
|
f & 0 & x_{pp} \\ |
|
0 & f & y_{pp} \\ |
|
0 & 0 & 1 |
|
\end{bmatrix}\f] |
|
*/ |
|
CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2, |
|
OutputArray R, OutputArray t, |
|
double focal = 1.0, Point2d pp = Point2d(0, 0), |
|
InputOutputArray mask = noArray() ); |
|
|
|
/** @overload |
|
@param E The input essential matrix. |
|
@param points1 Array of N 2D points from the first image. The point coordinates should be |
|
floating-point (single or double precision). |
|
@param points2 Array of the second image points of the same size and format as points1. |
|
@param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ . |
|
Note that this function assumes that points1 and points2 are feature points from cameras with the |
|
same camera intrinsic matrix. |
|
@param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple |
|
that performs a change of basis from the first camera's coordinate system to the second camera's |
|
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter |
|
description below. |
|
@param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and |
|
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit |
|
length. |
|
@param distanceThresh threshold distance which is used to filter out far away points (i.e. infinite |
|
points). |
|
@param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks |
|
inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to |
|
recover pose. In the output mask only inliers which pass the chirality check. |
|
@param triangulatedPoints 3D points which were reconstructed by triangulation. |
|
|
|
This function differs from the one above that it outputs the triangulated 3D point that are used for |
|
the chirality check. |
|
*/ |
|
CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2, |
|
InputArray cameraMatrix, OutputArray R, OutputArray t, |
|
double distanceThresh, InputOutputArray mask = noArray(), |
|
OutputArray triangulatedPoints = noArray()); |
|
|
|
/** @brief For points in an image of a stereo pair, computes the corresponding epilines in the other image. |
|
|
|
@param points Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV_32FC2 or |
|
vector\<Point2f\> . |
|
@param whichImage Index of the image (1 or 2) that contains the points . |
|
@param F Fundamental matrix that can be estimated using #findFundamentalMat or #stereoRectify . |
|
@param lines Output vector of the epipolar lines corresponding to the points in the other image. |
|
Each line \f$ax + by + c=0\f$ is encoded by 3 numbers \f$(a, b, c)\f$ . |
|
|
|
For every point in one of the two images of a stereo pair, the function finds the equation of the |
|
corresponding epipolar line in the other image. |
|
|
|
From the fundamental matrix definition (see #findFundamentalMat ), line \f$l^{(2)}_i\f$ in the second |
|
image for the point \f$p^{(1)}_i\f$ in the first image (when whichImage=1 ) is computed as: |
|
|
|
\f[l^{(2)}_i = F p^{(1)}_i\f] |
|
|
|
And vice versa, when whichImage=2, \f$l^{(1)}_i\f$ is computed from \f$p^{(2)}_i\f$ as: |
|
|
|
\f[l^{(1)}_i = F^T p^{(2)}_i\f] |
|
|
|
Line coefficients are defined up to a scale. They are normalized so that \f$a_i^2+b_i^2=1\f$ . |
|
*/ |
|
CV_EXPORTS_W void computeCorrespondEpilines( InputArray points, int whichImage, |
|
InputArray F, OutputArray lines ); |
|
|
|
/** @brief This function reconstructs 3-dimensional points (in homogeneous coordinates) by using |
|
their observations with a stereo camera. |
|
|
|
@param projMatr1 3x4 projection matrix of the first camera, i.e. this matrix projects 3D points |
|
given in the world's coordinate system into the first image. |
|
@param projMatr2 3x4 projection matrix of the second camera, i.e. this matrix projects 3D points |
|
given in the world's coordinate system into the second image. |
|
@param projPoints1 2xN array of feature points in the first image. In the case of the c++ version, |
|
it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1. |
|
@param projPoints2 2xN array of corresponding points in the second image. In the case of the c++ |
|
version, it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1. |
|
@param points4D 4xN array of reconstructed points in homogeneous coordinates. These points are |
|
returned in the world's coordinate system. |
|
|
|
@note |
|
Keep in mind that all input data should be of float type in order for this function to work. |
|
|
|
@note |
|
If the projection matrices from @ref stereoRectify are used, then the returned points are |
|
represented in the first camera's rectified coordinate system. |
|
|
|
@sa |
|
reprojectImageTo3D |
|
*/ |
|
CV_EXPORTS_W void triangulatePoints( InputArray projMatr1, InputArray projMatr2, |
|
InputArray projPoints1, InputArray projPoints2, |
|
OutputArray points4D ); |
|
|
|
/** @brief Refines coordinates of corresponding points. |
|
|
|
@param F 3x3 fundamental matrix. |
|
@param points1 1xN array containing the first set of points. |
|
@param points2 1xN array containing the second set of points. |
|
@param newPoints1 The optimized points1. |
|
@param newPoints2 The optimized points2. |
|
|
|
The function implements the Optimal Triangulation Method (see Multiple View Geometry @cite HartleyZ00 for details). |
|
For each given point correspondence points1[i] \<-\> points2[i], and a fundamental matrix F, it |
|
computes the corrected correspondences newPoints1[i] \<-\> newPoints2[i] that minimize the geometric |
|
error \f$d(points1[i], newPoints1[i])^2 + d(points2[i],newPoints2[i])^2\f$ (where \f$d(a,b)\f$ is the |
|
geometric distance between points \f$a\f$ and \f$b\f$ ) subject to the epipolar constraint |
|
\f$newPoints2^T \cdot F \cdot newPoints1 = 0\f$ . |
|
*/ |
|
CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2, |
|
OutputArray newPoints1, OutputArray newPoints2 ); |
|
|
|
/** @brief Calculates the Sampson Distance between two points. |
|
|
|
The function cv::sampsonDistance calculates and returns the first order approximation of the geometric error as: |
|
\f[ |
|
sd( \texttt{pt1} , \texttt{pt2} )= |
|
\frac{(\texttt{pt2}^t \cdot \texttt{F} \cdot \texttt{pt1})^2} |
|
{((\texttt{F} \cdot \texttt{pt1})(0))^2 + |
|
((\texttt{F} \cdot \texttt{pt1})(1))^2 + |
|
((\texttt{F}^t \cdot \texttt{pt2})(0))^2 + |
|
((\texttt{F}^t \cdot \texttt{pt2})(1))^2} |
|
\f] |
|
The fundamental matrix may be calculated using the #findFundamentalMat function. See @cite HartleyZ00 11.4.3 for details. |
|
@param pt1 first homogeneous 2d point |
|
@param pt2 second homogeneous 2d point |
|
@param F fundamental matrix |
|
@return The computed Sampson distance. |
|
*/ |
|
CV_EXPORTS_W double sampsonDistance(InputArray pt1, InputArray pt2, InputArray F); |
|
|
|
/** @brief Computes an optimal affine transformation between two 3D point sets. |
|
|
|
It computes |
|
\f[ |
|
\begin{bmatrix} |
|
x\\ |
|
y\\ |
|
z\\ |
|
\end{bmatrix} |
|
= |
|
\begin{bmatrix} |
|
a_{11} & a_{12} & a_{13}\\ |
|
a_{21} & a_{22} & a_{23}\\ |
|
a_{31} & a_{32} & a_{33}\\ |
|
\end{bmatrix} |
|
\begin{bmatrix} |
|
X\\ |
|
Y\\ |
|
Z\\ |
|
\end{bmatrix} |
|
+ |
|
\begin{bmatrix} |
|
b_1\\ |
|
b_2\\ |
|
b_3\\ |
|
\end{bmatrix} |
|
\f] |
|
|
|
@param src First input 3D point set containing \f$(X,Y,Z)\f$. |
|
@param dst Second input 3D point set containing \f$(x,y,z)\f$. |
|
@param out Output 3D affine transformation matrix \f$3 \times 4\f$ of the form |
|
\f[ |
|
\begin{bmatrix} |
|
a_{11} & a_{12} & a_{13} & b_1\\ |
|
a_{21} & a_{22} & a_{23} & b_2\\ |
|
a_{31} & a_{32} & a_{33} & b_3\\ |
|
\end{bmatrix} |
|
\f] |
|
@param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier). |
|
@param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as |
|
an inlier. |
|
@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything |
|
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation |
|
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation. |
|
|
|
The function estimates an optimal 3D affine transformation between two 3D point sets using the |
|
RANSAC algorithm. |
|
*/ |
|
CV_EXPORTS_W int estimateAffine3D(InputArray src, InputArray dst, |
|
OutputArray out, OutputArray inliers, |
|
double ransacThreshold = 3, double confidence = 0.99); |
|
|
|
/** @brief Computes an optimal affine transformation between two 3D point sets. |
|
|
|
It computes \f$R,s,t\f$ minimizing \f$\sum{i} dst_i - c \cdot R \cdot src_i \f$ |
|
where \f$R\f$ is a 3x3 rotation matrix, \f$t\f$ is a 3x1 translation vector and \f$s\f$ is a |
|
scalar size value. This is an implementation of the algorithm by Umeyama \cite umeyama1991least . |
|
The estimated affine transform has a homogeneous scale which is a subclass of affine |
|
transformations with 7 degrees of freedom. The paired point sets need to comprise at least 3 |
|
points each. |
|
|
|
@param src First input 3D point set. |
|
@param dst Second input 3D point set. |
|
@param scale If null is passed, the scale parameter c will be assumed to be 1.0. |
|
Else the pointed-to variable will be set to the optimal scale. |
|
@param force_rotation If true, the returned rotation will never be a reflection. |
|
This might be unwanted, e.g. when optimizing a transform between a right- and a |
|
left-handed coordinate system. |
|
@return 3D affine transformation matrix \f$3 \times 4\f$ of the form |
|
\f[T = |
|
\begin{bmatrix} |
|
R & t\\ |
|
\end{bmatrix} |
|
\f] |
|
|
|
*/ |
|
CV_EXPORTS_W cv::Mat estimateAffine3D(InputArray src, InputArray dst, |
|
CV_OUT double* scale = nullptr, bool force_rotation = true); |
|
|
|
/** @brief Computes an optimal translation between two 3D point sets. |
|
* |
|
* It computes |
|
* \f[ |
|
* \begin{bmatrix} |
|
* x\\ |
|
* y\\ |
|
* z\\ |
|
* \end{bmatrix} |
|
* = |
|
* \begin{bmatrix} |
|
* X\\ |
|
* Y\\ |
|
* Z\\ |
|
* \end{bmatrix} |
|
* + |
|
* \begin{bmatrix} |
|
* b_1\\ |
|
* b_2\\ |
|
* b_3\\ |
|
* \end{bmatrix} |
|
* \f] |
|
* |
|
* @param src First input 3D point set containing \f$(X,Y,Z)\f$. |
|
* @param dst Second input 3D point set containing \f$(x,y,z)\f$. |
|
* @param out Output 3D translation vector \f$3 \times 1\f$ of the form |
|
* \f[ |
|
* \begin{bmatrix} |
|
* b_1 \\ |
|
* b_2 \\ |
|
* b_3 \\ |
|
* \end{bmatrix} |
|
* \f] |
|
* @param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier). |
|
* @param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as |
|
* an inlier. |
|
* @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything |
|
* between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation |
|
* significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation. |
|
* |
|
* The function estimates an optimal 3D translation between two 3D point sets using the |
|
* RANSAC algorithm. |
|
* */ |
|
CV_EXPORTS_W int estimateTranslation3D(InputArray src, InputArray dst, |
|
OutputArray out, OutputArray inliers, |
|
double ransacThreshold = 3, double confidence = 0.99); |
|
|
|
/** @brief Computes an optimal affine transformation between two 2D point sets. |
|
|
|
It computes |
|
\f[ |
|
\begin{bmatrix} |
|
x\\ |
|
y\\ |
|
\end{bmatrix} |
|
= |
|
\begin{bmatrix} |
|
a_{11} & a_{12}\\ |
|
a_{21} & a_{22}\\ |
|
\end{bmatrix} |
|
\begin{bmatrix} |
|
X\\ |
|
Y\\ |
|
\end{bmatrix} |
|
+ |
|
\begin{bmatrix} |
|
b_1\\ |
|
b_2\\ |
|
\end{bmatrix} |
|
\f] |
|
|
|
@param from First input 2D point set containing \f$(X,Y)\f$. |
|
@param to Second input 2D point set containing \f$(x,y)\f$. |
|
@param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier). |
|
@param method Robust method used to compute transformation. The following methods are possible: |
|
- @ref RANSAC - RANSAC-based robust method |
|
- @ref LMEDS - Least-Median robust method |
|
RANSAC is the default method. |
|
@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider |
|
a point as an inlier. Applies only to RANSAC. |
|
@param maxIters The maximum number of robust method iterations. |
|
@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything |
|
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation |
|
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation. |
|
@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt). |
|
Passing 0 will disable refining, so the output matrix will be output of robust method. |
|
|
|
@return Output 2D affine transformation matrix \f$2 \times 3\f$ or empty matrix if transformation |
|
could not be estimated. The returned matrix has the following form: |
|
\f[ |
|
\begin{bmatrix} |
|
a_{11} & a_{12} & b_1\\ |
|
a_{21} & a_{22} & b_2\\ |
|
\end{bmatrix} |
|
\f] |
|
|
|
The function estimates an optimal 2D affine transformation between two 2D point sets using the |
|
selected robust algorithm. |
|
|
|
The computed transformation is then refined further (using only inliers) with the |
|
Levenberg-Marquardt method to reduce the re-projection error even more. |
|
|
|
@note |
|
The RANSAC method can handle practically any ratio of outliers but needs a threshold to |
|
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works |
|
correctly only when there are more than 50% of inliers. |
|
|
|
@sa estimateAffinePartial2D, getAffineTransform |
|
*/ |
|
CV_EXPORTS_W Mat estimateAffine2D(InputArray from, InputArray to, OutputArray inliers = noArray(), |
|
int method = RANSAC, double ransacReprojThreshold = 3, |
|
size_t maxIters = 2000, double confidence = 0.99, |
|
size_t refineIters = 10); |
|
|
|
|
|
CV_EXPORTS_W Mat estimateAffine2D(InputArray pts1, InputArray pts2, OutputArray inliers, |
|
const UsacParams ¶ms); |
|
|
|
/** @brief Computes an optimal limited affine transformation with 4 degrees of freedom between |
|
two 2D point sets. |
|
|
|
@param from First input 2D point set. |
|
@param to Second input 2D point set. |
|
@param inliers Output vector indicating which points are inliers. |
|
@param method Robust method used to compute transformation. The following methods are possible: |
|
- @ref RANSAC - RANSAC-based robust method |
|
- @ref LMEDS - Least-Median robust method |
|
RANSAC is the default method. |
|
@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider |
|
a point as an inlier. Applies only to RANSAC. |
|
@param maxIters The maximum number of robust method iterations. |
|
@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything |
|
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation |
|
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation. |
|
@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt). |
|
Passing 0 will disable refining, so the output matrix will be output of robust method. |
|
|
|
@return Output 2D affine transformation (4 degrees of freedom) matrix \f$2 \times 3\f$ or |
|
empty matrix if transformation could not be estimated. |
|
|
|
The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to |
|
combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust |
|
estimation. |
|
|
|
The computed transformation is then refined further (using only inliers) with the |
|
Levenberg-Marquardt method to reduce the re-projection error even more. |
|
|
|
Estimated transformation matrix is: |
|
\f[ \begin{bmatrix} \cos(\theta) \cdot s & -\sin(\theta) \cdot s & t_x \\ |
|
\sin(\theta) \cdot s & \cos(\theta) \cdot s & t_y |
|
\end{bmatrix} \f] |
|
Where \f$ \theta \f$ is the rotation angle, \f$ s \f$ the scaling factor and \f$ t_x, t_y \f$ are |
|
translations in \f$ x, y \f$ axes respectively. |
|
|
|
@note |
|
The RANSAC method can handle practically any ratio of outliers but need a threshold to |
|
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works |
|
correctly only when there are more than 50% of inliers. |
|
|
|
@sa estimateAffine2D, getAffineTransform |
|
*/ |
|
CV_EXPORTS_W cv::Mat estimateAffinePartial2D(InputArray from, InputArray to, OutputArray inliers = noArray(), |
|
int method = RANSAC, double ransacReprojThreshold = 3, |
|
size_t maxIters = 2000, double confidence = 0.99, |
|
size_t refineIters = 10); |
|
|
|
/** @example samples/cpp/tutorial_code/features2D/Homography/decompose_homography.cpp |
|
An example program with homography decomposition. |
|
|
|
Check @ref tutorial_homography "the corresponding tutorial" for more details. |
|
*/ |
|
|
|
/** @brief Decompose a homography matrix to rotation(s), translation(s) and plane normal(s). |
|
|
|
@param H The input homography matrix between two images. |
|
@param K The input camera intrinsic matrix. |
|
@param rotations Array of rotation matrices. |
|
@param translations Array of translation matrices. |
|
@param normals Array of plane normal matrices. |
|
|
|
This function extracts relative camera motion between two views of a planar object and returns up to |
|
four mathematical solution tuples of rotation, translation, and plane normal. The decomposition of |
|
the homography matrix H is described in detail in @cite Malis2007. |
|
|
|
If the homography H, induced by the plane, gives the constraint |
|
\f[s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\f] on the source image points |
|
\f$p_i\f$ and the destination image points \f$p'_i\f$, then the tuple of rotations[k] and |
|
translations[k] is a change of basis from the source camera's coordinate system to the destination |
|
camera's coordinate system. However, by decomposing H, one can only get the translation normalized |
|
by the (typically unknown) depth of the scene, i.e. its direction but with normalized length. |
|
|
|
If point correspondences are available, at least two solutions may further be invalidated, by |
|
applying positive depth constraint, i.e. all points must be in front of the camera. |
|
*/ |
|
CV_EXPORTS_W int decomposeHomographyMat(InputArray H, |
|
InputArray K, |
|
OutputArrayOfArrays rotations, |
|
OutputArrayOfArrays translations, |
|
OutputArrayOfArrays normals); |
|
|
|
/** @brief Filters homography decompositions based on additional information. |
|
|
|
@param rotations Vector of rotation matrices. |
|
@param normals Vector of plane normal matrices. |
|
@param beforePoints Vector of (rectified) visible reference points before the homography is applied |
|
@param afterPoints Vector of (rectified) visible reference points after the homography is applied |
|
@param possibleSolutions Vector of int indices representing the viable solution set after filtering |
|
@param pointsMask optional Mat/Vector of 8u type representing the mask for the inliers as given by the #findHomography function |
|
|
|
This function is intended to filter the output of the #decomposeHomographyMat based on additional |
|
information as described in @cite Malis2007 . The summary of the method: the #decomposeHomographyMat function |
|
returns 2 unique solutions and their "opposites" for a total of 4 solutions. If we have access to the |
|
sets of points visible in the camera frame before and after the homography transformation is applied, |
|
we can determine which are the true potential solutions and which are the opposites by verifying which |
|
homographies are consistent with all visible reference points being in front of the camera. The inputs |
|
are left unchanged; the filtered solution set is returned as indices into the existing one. |
|
|
|
*/ |
|
CV_EXPORTS_W void filterHomographyDecompByVisibleRefpoints(InputArrayOfArrays rotations, |
|
InputArrayOfArrays normals, |
|
InputArray beforePoints, |
|
InputArray afterPoints, |
|
OutputArray possibleSolutions, |
|
InputArray pointsMask = noArray()); |
|
|
|
//! cv::undistort mode |
|
enum UndistortTypes |
|
{ |
|
PROJ_SPHERICAL_ORTHO = 0, |
|
PROJ_SPHERICAL_EQRECT = 1 |
|
}; |
|
|
|
/** @brief Transforms an image to compensate for lens distortion. |
|
|
|
The function transforms an image to compensate radial and tangential lens distortion. |
|
|
|
The function is simply a combination of #initUndistortRectifyMap (with unity R ) and #remap |
|
(with bilinear interpolation). See the former function for details of the transformation being |
|
performed. |
|
|
|
Those pixels in the destination image, for which there is no correspondent pixels in the source |
|
image, are filled with zeros (black color). |
|
|
|
A particular subset of the source image that will be visible in the corrected image can be regulated |
|
by newCameraMatrix. You can use #getOptimalNewCameraMatrix to compute the appropriate |
|
newCameraMatrix depending on your requirements. |
|
|
|
The camera matrix and the distortion parameters can be determined using #calibrateCamera. If |
|
the resolution of images is different from the resolution used at the calibration stage, \f$f_x, |
|
f_y, c_x\f$ and \f$c_y\f$ need to be scaled accordingly, while the distortion coefficients remain |
|
the same. |
|
|
|
@param src Input (distorted) image. |
|
@param dst Output (corrected) image that has the same size and type as src . |
|
@param cameraMatrix Input camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . |
|
@param distCoeffs Input vector of distortion coefficients |
|
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ |
|
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed. |
|
@param newCameraMatrix Camera matrix of the distorted image. By default, it is the same as |
|
cameraMatrix but you may additionally scale and shift the result by using a different matrix. |
|
*/ |
|
CV_EXPORTS_W void undistort( InputArray src, OutputArray dst, |
|
InputArray cameraMatrix, |
|
InputArray distCoeffs, |
|
InputArray newCameraMatrix = noArray() ); |
|
|
|
/** @brief Computes the undistortion and rectification transformation map. |
|
|
|
The function computes the joint undistortion and rectification transformation and represents the |
|
result in the form of maps for #remap. The undistorted image looks like original, as if it is |
|
captured with a camera using the camera matrix =newCameraMatrix and zero distortion. In case of a |
|
monocular camera, newCameraMatrix is usually equal to cameraMatrix, or it can be computed by |
|
#getOptimalNewCameraMatrix for a better control over scaling. In case of a stereo camera, |
|
newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify . |
|
|
|
Also, this new camera is oriented differently in the coordinate space, according to R. That, for |
|
example, helps to align two heads of a stereo camera so that the epipolar lines on both images |
|
become horizontal and have the same y- coordinate (in case of a horizontally aligned stereo camera). |
|
|
|
The function actually builds the maps for the inverse mapping algorithm that is used by #remap. That |
|
is, for each pixel \f$(u, v)\f$ in the destination (corrected and rectified) image, the function |
|
computes the corresponding coordinates in the source image (that is, in the original image from |
|
camera). The following process is applied: |
|
\f[ |
|
\begin{array}{l} |
|
x \leftarrow (u - {c'}_x)/{f'}_x \\ |
|
y \leftarrow (v - {c'}_y)/{f'}_y \\ |
|
{[X\,Y\,W]} ^T \leftarrow R^{-1}*[x \, y \, 1]^T \\ |
|
x' \leftarrow X/W \\ |
|
y' \leftarrow Y/W \\ |
|
r^2 \leftarrow x'^2 + y'^2 \\ |
|
x'' \leftarrow x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} |
|
+ 2p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4\\ |
|
y'' \leftarrow y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} |
|
+ p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\ |
|
s\vecthree{x'''}{y'''}{1} = |
|
\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}((\tau_x, \tau_y)} |
|
{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)} |
|
{0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\ |
|
map_x(u,v) \leftarrow x''' f_x + c_x \\ |
|
map_y(u,v) \leftarrow y''' f_y + c_y |
|
\end{array} |
|
\f] |
|
where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ |
|
are the distortion coefficients. |
|
|
|
In case of a stereo camera, this function is called twice: once for each camera head, after |
|
#stereoRectify, which in its turn is called after #stereoCalibrate. But if the stereo camera |
|
was not calibrated, it is still possible to compute the rectification transformations directly from |
|
the fundamental matrix using #stereoRectifyUncalibrated. For each camera, the function computes |
|
homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D |
|
space. R can be computed from H as |
|
\f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f] |
|
where cameraMatrix can be chosen arbitrarily. |
|
|
|
@param cameraMatrix Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . |
|
@param distCoeffs Input vector of distortion coefficients |
|
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ |
|
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed. |
|
@param R Optional rectification transformation in the object space (3x3 matrix). R1 or R2 , |
|
computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation |
|
is assumed. In #initUndistortRectifyMap R assumed to be an identity matrix. |
|
@param newCameraMatrix New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$. |
|
@param size Undistorted image size. |
|
@param m1type Type of the first output map that can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps |
|
@param map1 The first output map. |
|
@param map2 The second output map. |
|
*/ |
|
CV_EXPORTS_W |
|
void initUndistortRectifyMap(InputArray cameraMatrix, InputArray distCoeffs, |
|
InputArray R, InputArray newCameraMatrix, |
|
Size size, int m1type, OutputArray map1, OutputArray map2); |
|
|
|
/** @brief Computes the projection and inverse-rectification transformation map. In essense, this is the inverse of |
|
#initUndistortRectifyMap to accomodate stereo-rectification of projectors ('inverse-cameras') in projector-camera pairs. |
|
|
|
The function computes the joint projection and inverse rectification transformation and represents the |
|
result in the form of maps for #remap. The projected image looks like a distorted version of the original which, |
|
once projected by a projector, should visually match the original. In case of a monocular camera, newCameraMatrix |
|
is usually equal to cameraMatrix, or it can be computed by |
|
#getOptimalNewCameraMatrix for a better control over scaling. In case of a projector-camera pair, |
|
newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify . |
|
|
|
The projector is oriented differently in the coordinate space, according to R. In case of projector-camera pairs, |
|
this helps align the projector (in the same manner as #initUndistortRectifyMap for the camera) to create a stereo-rectified pair. This |
|
allows epipolar lines on both images to become horizontal and have the same y-coordinate (in case of a horizontally aligned projector-camera pair). |
|
|
|
The function builds the maps for the inverse mapping algorithm that is used by #remap. That |
|
is, for each pixel \f$(u, v)\f$ in the destination (projected and inverse-rectified) image, the function |
|
computes the corresponding coordinates in the source image (that is, in the original digital image). The following process is applied: |
|
|
|
\f[ |
|
\begin{array}{l} |
|
\text{newCameraMatrix}\\ |
|
x \leftarrow (u - {c'}_x)/{f'}_x \\ |
|
y \leftarrow (v - {c'}_y)/{f'}_y \\ |
|
|
|
\\\text{Undistortion} |
|
\\\scriptsize{\textit{though equation shown is for radial undistortion, function implements cv::undistortPoints()}}\\ |
|
r^2 \leftarrow x^2 + y^2 \\ |
|
\theta \leftarrow \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}\\ |
|
x' \leftarrow \frac{x}{\theta} \\ |
|
y' \leftarrow \frac{y}{\theta} \\ |
|
|
|
\\\text{Rectification}\\ |
|
{[X\,Y\,W]} ^T \leftarrow R*[x' \, y' \, 1]^T \\ |
|
x'' \leftarrow X/W \\ |
|
y'' \leftarrow Y/W \\ |
|
|
|
\\\text{cameraMatrix}\\ |
|
map_x(u,v) \leftarrow x'' f_x + c_x \\ |
|
map_y(u,v) \leftarrow y'' f_y + c_y |
|
\end{array} |
|
\f] |
|
where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ |
|
are the distortion coefficients vector distCoeffs. |
|
|
|
In case of a stereo-rectified projector-camera pair, this function is called for the projector while #initUndistortRectifyMap is called for the camera head. |
|
This is done after #stereoRectify, which in turn is called after #stereoCalibrate. If the projector-camera pair |
|
is not calibrated, it is still possible to compute the rectification transformations directly from |
|
the fundamental matrix using #stereoRectifyUncalibrated. For the projector and camera, the function computes |
|
homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D |
|
space. R can be computed from H as |
|
\f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f] |
|
where cameraMatrix can be chosen arbitrarily. |
|
|
|
@param cameraMatrix Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . |
|
@param distCoeffs Input vector of distortion coefficients |
|
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ |
|
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed. |
|
@param R Optional rectification transformation in the object space (3x3 matrix). R1 or R2, |
|
computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation |
|
is assumed. |
|
@param newCameraMatrix New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$. |
|
@param size Distorted image size. |
|
@param m1type Type of the first output map. Can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps |
|
@param map1 The first output map for #remap. |
|
@param map2 The second output map for #remap. |
|
*/ |
|
CV_EXPORTS_W |
|
void initInverseRectificationMap( InputArray cameraMatrix, InputArray distCoeffs, |
|
InputArray R, InputArray newCameraMatrix, |
|
const Size& size, int m1type, OutputArray map1, OutputArray map2 ); |
|
|
|
|
|
//! initializes maps for #remap for wide-angle |
|
CV_EXPORTS |
|
float initWideAngleProjMap(InputArray cameraMatrix, InputArray distCoeffs, |
|
Size imageSize, int destImageWidth, |
|
int m1type, OutputArray map1, OutputArray map2, |
|
enum UndistortTypes projType = PROJ_SPHERICAL_EQRECT, double alpha = 0); |
|
static inline |
|
float initWideAngleProjMap(InputArray cameraMatrix, InputArray distCoeffs, |
|
Size imageSize, int destImageWidth, |
|
int m1type, OutputArray map1, OutputArray map2, |
|
int projType, double alpha = 0) |
|
{ |
|
return initWideAngleProjMap(cameraMatrix, distCoeffs, imageSize, destImageWidth, |
|
m1type, map1, map2, (UndistortTypes)projType, alpha); |
|
} |
|
|
|
/** @brief Returns the default new camera matrix. |
|
|
|
The function returns the camera matrix that is either an exact copy of the input cameraMatrix (when |
|
centerPrinicipalPoint=false ), or the modified one (when centerPrincipalPoint=true). |
|
|
|
In the latter case, the new camera matrix will be: |
|
|
|
\f[\begin{bmatrix} f_x && 0 && ( \texttt{imgSize.width} -1)*0.5 \\ 0 && f_y && ( \texttt{imgSize.height} -1)*0.5 \\ 0 && 0 && 1 \end{bmatrix} ,\f] |
|
|
|
where \f$f_x\f$ and \f$f_y\f$ are \f$(0,0)\f$ and \f$(1,1)\f$ elements of cameraMatrix, respectively. |
|
|
|
By default, the undistortion functions in OpenCV (see #initUndistortRectifyMap, #undistort) do not |
|
move the principal point. However, when you work with stereo, it is important to move the principal |
|
points in both views to the same y-coordinate (which is required by most of stereo correspondence |
|
algorithms), and may be to the same x-coordinate too. So, you can form the new camera matrix for |
|
each view where the principal points are located at the center. |
|
|
|
@param cameraMatrix Input camera matrix. |
|
@param imgsize Camera view image size in pixels. |
|
@param centerPrincipalPoint Location of the principal point in the new camera matrix. The |
|
parameter indicates whether this location should be at the image center or not. |
|
*/ |
|
CV_EXPORTS_W |
|
Mat getDefaultNewCameraMatrix(InputArray cameraMatrix, Size imgsize = Size(), |
|
bool centerPrincipalPoint = false); |
|
|
|
/** @brief Returns the inscribed and bounding rectangles for the "undisorted" image plane. |
|
|
|
The functions emulates undistortion of the image plane using the specified camera matrix, |
|
distortion coefficients, the optional 3D rotation and the "new" camera matrix. In the case of |
|
noticeable radial (or maybe pinclusion) distortion the rectangular image plane is distorted and |
|
turns into some convex or concave shape. The function computes approximate inscribed (inner) and |
|
bounding (outer) rectangles after such undistortion. The rectangles can be used to adjust |
|
the newCameraMatrix so that the result image, for example, fits all the data from the original image |
|
(at the expense of possibly big "black" areas) or, for another example, gets rid of black areas at the expense |
|
some lost data near the original image edge. The function #getOptimalNewCameraMatrix uses this function |
|
to compute the optimal new camera matrix. |
|
|
|
@param cameraMatrix the original camera matrix. |
|
@param distCoeffs distortion coefficients. |
|
@param R the optional 3D rotation, applied before projection (see stereoRectify etc.) |
|
@param newCameraMatrix the new camera matrix after undistortion. Usually it matches the original cameraMatrix. |
|
@param imgSize the size of the image plane. |
|
@param inner the output maximal inscribed rectangle of the undistorted image plane. |
|
@param outer the output minimal bounding rectangle of the undistorted image plane. |
|
*/ |
|
CV_EXPORTS void getUndistortRectangles(InputArray cameraMatrix, InputArray distCoeffs, |
|
InputArray R, InputArray newCameraMatrix, Size imgSize, |
|
Rect_<double>& inner, Rect_<double>& outer ); |
|
|
|
/** @brief Returns the new camera intrinsic matrix based on the free scaling parameter. |
|
|
|
@param cameraMatrix Input camera intrinsic matrix. |
|
@param distCoeffs Input vector of distortion coefficients |
|
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are |
|
assumed. |
|
@param imageSize Original image size. |
|
@param alpha Free scaling parameter between 0 (when all the pixels in the undistorted image are |
|
valid) and 1 (when all the source image pixels are retained in the undistorted image). See |
|
#stereoRectify for details. |
|
@param newImgSize Image size after rectification. By default, it is set to imageSize . |
|
@param validPixROI Optional output rectangle that outlines all-good-pixels region in the |
|
undistorted image. See roi1, roi2 description in #stereoRectify . |
|
@param centerPrincipalPoint Optional flag that indicates whether in the new camera intrinsic matrix the |
|
principal point should be at the image center or not. By default, the principal point is chosen to |
|
best fit a subset of the source image (determined by alpha) to the corrected image. |
|
@return new_camera_matrix Output new camera intrinsic matrix. |
|
|
|
The function computes and returns the optimal new camera intrinsic matrix based on the free scaling parameter. |
|
By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original |
|
image pixels if there is valuable information in the corners alpha=1 , or get something in between. |
|
When alpha\>0 , the undistorted result is likely to have some black pixels corresponding to |
|
"virtual" pixels outside of the captured distorted image. The original camera intrinsic matrix, distortion |
|
coefficients, the computed new camera intrinsic matrix, and newImageSize should be passed to |
|
#initUndistortRectifyMap to produce the maps for #remap . |
|
*/ |
|
CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray distCoeffs, |
|
Size imageSize, double alpha, Size newImgSize = Size(), |
|
CV_OUT Rect* validPixROI = 0, |
|
bool centerPrincipalPoint = false); |
|
|
|
/** @brief Computes the ideal point coordinates from the observed point coordinates. |
|
|
|
The function is similar to #undistort and #initUndistortRectifyMap but it operates on a |
|
sparse set of points instead of a raster image. Also the function performs a reverse transformation |
|
to #projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a |
|
planar object, it does, up to a translation vector, if the proper R is specified. |
|
|
|
For each observed point coordinate \f$(u, v)\f$ the function computes: |
|
\f[ |
|
\begin{array}{l} |
|
x^{"} \leftarrow (u - c_x)/f_x \\ |
|
y^{"} \leftarrow (v - c_y)/f_y \\ |
|
(x',y') = undistort(x^{"},y^{"}, \texttt{distCoeffs}) \\ |
|
{[X\,Y\,W]} ^T \leftarrow R*[x' \, y' \, 1]^T \\ |
|
x \leftarrow X/W \\ |
|
y \leftarrow Y/W \\ |
|
\text{only performed if P is specified:} \\ |
|
u' \leftarrow x {f'}_x + {c'}_x \\ |
|
v' \leftarrow y {f'}_y + {c'}_y |
|
\end{array} |
|
\f] |
|
|
|
where *undistort* is an approximate iterative algorithm that estimates the normalized original |
|
point coordinates out of the normalized distorted point coordinates ("normalized" means that the |
|
coordinates do not depend on the camera matrix). |
|
|
|
The function can be used for both a stereo camera head or a monocular camera (when R is empty). |
|
@param src Observed point coordinates, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or CV_64FC2) (or |
|
vector\<Point2f\> ). |
|
@param dst Output ideal point coordinates (1xN/Nx1 2-channel or vector\<Point2f\> ) after undistortion and reverse perspective |
|
transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates. |
|
@param cameraMatrix Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . |
|
@param distCoeffs Input vector of distortion coefficients |
|
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ |
|
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed. |
|
@param R Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by |
|
#stereoRectify can be passed here. If the matrix is empty, the identity transformation is used. |
|
@param P New camera matrix (3x3) or new projection matrix (3x4) \f$\begin{bmatrix} {f'}_x & 0 & {c'}_x & t_x \\ 0 & {f'}_y & {c'}_y & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix}\f$. P1 or P2 computed by |
|
#stereoRectify can be passed here. If the matrix is empty, the identity new camera matrix is used. |
|
@param criteria termination criteria for the iterative point undistortion algorithm |
|
*/ |
|
CV_EXPORTS_W |
|
void undistortPoints(InputArray src, OutputArray dst, |
|
InputArray cameraMatrix, InputArray distCoeffs, |
|
InputArray R = noArray(), InputArray P = noArray(), |
|
TermCriteria criteria=TermCriteria(TermCriteria::MAX_ITER, 5, 0.01)); |
|
|
|
|
|
/** |
|
* @brief Compute undistorted image points position |
|
* |
|
* @param src Observed points position, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or CV_64FC2) (or vector\<Point2f\> ). |
|
* @param dst Output undistorted points position (1xN/Nx1 2-channel or vector\<Point2f\> ). |
|
* @param cameraMatrix Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . |
|
* @param distCoeffs Distortion coefficients |
|
*/ |
|
CV_EXPORTS_W |
|
void undistortImagePoints(InputArray src, OutputArray dst, InputArray cameraMatrix, |
|
InputArray distCoeffs, |
|
TermCriteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 0.01)); |
|
|
|
namespace fisheye { |
|
|
|
/** @brief Projects points using fisheye model |
|
|
|
@param objectPoints Array of object points, 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is |
|
the number of points in the view. |
|
@param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or |
|
vector\<Point2f\>. |
|
@param affine |
|
@param K Camera intrinsic matrix \f$cameramatrix{K}\f$. |
|
@param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$. |
|
@param alpha The skew coefficient. |
|
@param jacobian Optional output 2Nx15 jacobian matrix of derivatives of image points with respect |
|
to components of the focal lengths, coordinates of the principal point, distortion coefficients, |
|
rotation vector, translation vector, and the skew. In the old interface different components of |
|
the jacobian are returned via different output parameters. |
|
|
|
The function computes projections of 3D points to the image plane given intrinsic and extrinsic |
|
camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of |
|
image points coordinates (as functions of all the input parameters) with respect to the particular |
|
parameters, intrinsic and/or extrinsic. |
|
*/ |
|
CV_EXPORTS void projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine, |
|
InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray()); |
|
|
|
/** @overload */ |
|
CV_EXPORTS_W void projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec, |
|
InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray()); |
|
|
|
/** @brief Distorts 2D points using fisheye model. |
|
|
|
@param undistorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is |
|
the number of points in the view. |
|
@param K Camera intrinsic matrix \f$cameramatrix{K}\f$. |
|
@param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$. |
|
@param alpha The skew coefficient. |
|
@param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> . |
|
|
|
Note that the function assumes the camera intrinsic matrix of the undistorted points to be identity. |
|
This means if you want to distort image points you have to multiply them with \f$K^{-1}\f$. |
|
*/ |
|
CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha = 0); |
|
|
|
/** @brief Undistorts 2D points using fisheye model |
|
|
|
@param distorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is the |
|
number of points in the view. |
|
@param K Camera intrinsic matrix \f$cameramatrix{K}\f$. |
|
@param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$. |
|
@param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3 |
|
1-channel or 1x1 3-channel |
|
@param P New camera intrinsic matrix (3x3) or new projection matrix (3x4) |
|
@param criteria Termination criteria |
|
@param undistorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> . |
|
*/ |
|
CV_EXPORTS_W void undistortPoints(InputArray distorted, OutputArray undistorted, |
|
InputArray K, InputArray D, InputArray R = noArray(), InputArray P = noArray(), |
|
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 10, 1e-8)); |
|
|
|
/** @brief Estimates new camera intrinsic matrix for undistortion or rectification. |
|
|
|
@param K Camera intrinsic matrix \f$cameramatrix{K}\f$. |
|
@param image_size Size of the image |
|
@param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$. |
|
@param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3 |
|
1-channel or 1x1 3-channel |
|
@param P New camera intrinsic matrix (3x3) or new projection matrix (3x4) |
|
@param balance Sets the new focal length in range between the min focal length and the max focal |
|
length. Balance is in range of [0, 1]. |
|
@param new_size the new size |
|
@param fov_scale Divisor for new focal length. |
|
*/ |
|
CV_EXPORTS_W void estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R, |
|
OutputArray P, double balance = 0.0, const Size& new_size = Size(), double fov_scale = 1.0); |
|
|
|
/** @brief Computes undistortion and rectification maps for image transform by cv::remap(). If D is empty zero |
|
distortion is used, if R or P is empty identity matrixes are used. |
|
|
|
@param K Camera intrinsic matrix \f$cameramatrix{K}\f$. |
|
@param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$. |
|
@param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3 |
|
1-channel or 1x1 3-channel |
|
@param P New camera intrinsic matrix (3x3) or new projection matrix (3x4) |
|
@param size Undistorted image size. |
|
@param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2 . See convertMaps() |
|
for details. |
|
@param map1 The first output map. |
|
@param map2 The second output map. |
|
*/ |
|
CV_EXPORTS_W void initUndistortRectifyMap(InputArray K, InputArray D, InputArray R, InputArray P, |
|
const cv::Size& size, int m1type, OutputArray map1, OutputArray map2); |
|
|
|
/** @brief Transforms an image to compensate for fisheye lens distortion. |
|
|
|
@param distorted image with fisheye lens distortion. |
|
@param undistorted Output image with compensated fisheye lens distortion. |
|
@param K Camera intrinsic matrix \f$cameramatrix{K}\f$. |
|
@param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$. |
|
@param Knew Camera intrinsic matrix of the distorted image. By default, it is the identity matrix but you |
|
may additionally scale and shift the result by using a different matrix. |
|
@param new_size the new size |
|
|
|
The function transforms an image to compensate radial and tangential lens distortion. |
|
|
|
The function is simply a combination of fisheye::initUndistortRectifyMap (with unity R ) and remap |
|
(with bilinear interpolation). See the former function for details of the transformation being |
|
performed. |
|
|
|
See below the results of undistortImage. |
|
- a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3, |
|
k_4, k_5, k_6) of distortion were optimized under calibration) |
|
- b\) result of fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2, |
|
k_3, k_4) of fisheye distortion were optimized under calibration) |
|
- c\) original image was captured with fisheye lens |
|
|
|
Pictures a) and b) almost the same. But if we consider points of image located far from the center |
|
of image, we can notice that on image a) these points are distorted. |
|
|
|
![image](pics/fisheye_undistorted.jpg) |
|
*/ |
|
CV_EXPORTS_W void undistortImage(InputArray distorted, OutputArray undistorted, |
|
InputArray K, InputArray D, InputArray Knew = cv::noArray(), const Size& new_size = Size()); |
|
|
|
} // namespace fisheye |
|
|
|
/** @brief Octree for 3D vision. |
|
* |
|
* In 3D vision filed, the Octree is used to process and accelerate the pointcloud data. The class Octree represents |
|
* the Octree data structure. Each Octree will have a fixed depth. The depth of Octree refers to the distance from |
|
* the root node to the leaf node.All OctreeNodes will not exceed this depth.Increasing the depth will increase |
|
* the amount of calculation exponentially. And the small number of depth refers low resolution of Octree. |
|
* Each node contains 8 children, which are used to divide the space cube into eight parts. Each octree node represents |
|
* a cube. And these eight children will have a fixed order, the order is described as follows: |
|
* |
|
* For illustration, assume, |
|
* |
|
* rootNode: origin == (0, 0, 0), size == 2 |
|
* |
|
* Then, |
|
* |
|
* children[0]: origin == (0, 0, 0), size == 1 |
|
* |
|
* children[1]: origin == (1, 0, 0), size == 1, along X-axis next to child 0 |
|
* |
|
* children[2]: origin == (0, 1, 0), size == 1, along Y-axis next to child 0 |
|
* |
|
* children[3]: origin == (1, 1, 0), size == 1, in X-Y plane |
|
* |
|
* children[4]: origin == (0, 0, 1), size == 1, along Z-axis next to child 0 |
|
* |
|
* children[5]: origin == (1, 0, 1), size == 1, in X-Z plane |
|
* |
|
* children[6]: origin == (0, 1, 1), size == 1, in Y-Z plane |
|
* |
|
* children[7]: origin == (1, 1, 1), size == 1, furthest from child 0 |
|
*/ |
|
|
|
class CV_EXPORTS Octree { |
|
|
|
public: |
|
|
|
//! Default constructor. |
|
Octree(); |
|
|
|
/** @overload |
|
* @brief Create an empty Octree and set the maximum depth. |
|
* |
|
* @param maxDepth The max depth of the Octree. The maxDepth > -1. |
|
*/ |
|
explicit Octree(int maxDepth); |
|
|
|
/** @overload |
|
* @brief Create an Octree from the PointCloud data with the specific max depth. |
|
* |
|
* @param pointCloud Point cloud data. |
|
* @param maxDepth The max depth of the Octree. |
|
*/ |
|
Octree(const std::vector<Point3f> &pointCloud, int maxDepth); |
|
|
|
/** @overload |
|
* @brief Create an empty Octree. |
|
* |
|
* @param maxDepth Max depth. |
|
* @param size Initial Cube size. |
|
* @param origin Initial center coordinate. |
|
*/ |
|
Octree(int maxDepth, double size, const Point3f& origin); |
|
|
|
//! Default destructor |
|
~Octree(); |
|
|
|
/** @brief Insert a point data to a OctreeNode. |
|
* |
|
* @param point The point data in Point3f format. |
|
* @return Returns whether the insertion is successful. |
|
*/ |
|
bool insertPoint(const Point3f& point); |
|
|
|
/** @brief Read point cloud data and create OctreeNode. |
|
* |
|
* This function is only called when the octree is being created. |
|
* @param pointCloud PointCloud data. |
|
* @param maxDepth The max depth of the Octree. |
|
* @return Returns whether the creation is successful. |
|
*/ |
|
bool create(const std::vector<Point3f> &pointCloud, int maxDepth = -1); |
|
|
|
/** @brief Determine whether the point is within the space range of the specific cube. |
|
* |
|
* @param point The point coordinates. |
|
* @return If point is in bound, return ture. Otherwise, false. |
|
*/ |
|
bool isPointInBound(const Point3f& point) const; |
|
|
|
//! Set MaxDepth for Octree. |
|
void setMaxDepth(int maxDepth); |
|
|
|
//! Set Box Size for Octree. |
|
void setSize(double size); |
|
|
|
//! Set Origin coordinates for Octree. |
|
void setOrigin(const Point3f& origin); |
|
|
|
//! returns true if the rootnode is NULL. |
|
bool empty() const; |
|
|
|
/** @brief Reset all octree parameter. |
|
* |
|
* Clear all the nodes of the octree and initialize the parameters. |
|
*/ |
|
void clear(); |
|
|
|
/** @brief Delete a given point from the Octree. |
|
* |
|
* Delete the corresponding element from the pointList in the corresponding leaf node. If the leaf node |
|
* does not contain other points after deletion, this node will be deleted. In the same way, |
|
* its parent node may also be deleted if its last child is deleted. |
|
* @param point The point coordinates. |
|
* @return return ture if the point is deleted successfully. |
|
*/ |
|
bool deletePoint(const Point3f& point); |
|
|
|
/** @brief Radius Nearest Neighbor Search in Octree |
|
* |
|
* Search all points that are less than or equal to radius. |
|
* And return the number of searched points. |
|
* @param query Query point. |
|
* @param radius Retrieved radius value. |
|
* @param pointSet Point output. Contains searched points, and output vector is not in order. |
|
* @param squareDistSet Dist output. Contains searched squared distance, and output vector is not in order. |
|
* @return the number of searched points. |
|
*/ |
|
int radiusNNSearch(const Point3f& query, float radius, std::vector<Point3f> &pointSet, std::vector<float> &squareDistSet) const; |
|
|
|
/** @brief K Nearest Neighbor Search in Octree. |
|
* |
|
* Find the K nearest neighbors to the query point. |
|
* @param query Query point. |
|
* @param K |
|
* @param pointSet Point output. Contains K points, arranged in order of distance from near to far. |
|
* @param squareDistSet Dist output. Contains K squared distance, arranged in order of distance from near to far. |
|
*/ |
|
void KNNSearch(const Point3f& query, const int K, std::vector<Point3f> &pointSet, std::vector<float> &squareDistSet) const; |
|
|
|
protected: |
|
struct Impl; |
|
Ptr<Impl> p; |
|
}; |
|
|
|
|
|
/** @brief Loads a point cloud from a file. |
|
* |
|
* The function loads point cloud from the specified file and returns it. |
|
* If the cloud cannot be read, throws an error |
|
* |
|
* Currently, the following file formats are supported: |
|
* - [Wavefront obj file *.obj](https://en.wikipedia.org/wiki/Wavefront_.obj_file) |
|
* - [Polygon File Format *.ply](https://en.wikipedia.org/wiki/PLY_(file_format)) |
|
* |
|
* @param filename Name of the file. |
|
* @param vertices (vector of Point3f) Point coordinates of a point cloud |
|
* @param normals (vector of Point3f) Point normals of a point cloud |
|
* @param rgb (vector of Point3_<uchar>) Point RGB color of a point cloud |
|
*/ |
|
CV_EXPORTS_W void loadPointCloud(const String &filename, OutputArray vertices, OutputArray normals = noArray(), OutputArray rgb = noArray()); |
|
|
|
/** @brief Saves a point cloud to a specified file. |
|
* |
|
* The function saves point cloud to the specified file. |
|
* File format is chosen based on the filename extension. |
|
* |
|
* @param filename Name of the file. |
|
* @param vertices (vector of Point3f) Point coordinates of a point cloud |
|
* @param normals (vector of Point3f) Point normals of a point cloud |
|
* @param rgb (vector of Point3_<uchar>) Point RGB color of a point cloud |
|
*/ |
|
CV_EXPORTS_W void savePointCloud(const String &filename, InputArray vertices, InputArray normals = noArray(), InputArray rgb = noArray()); |
|
|
|
/** @brief Loads a mesh from a file. |
|
* |
|
* The function loads mesh from the specified file and returns it. |
|
* If the mesh cannot be read, throws an error |
|
* |
|
* Currently, the following file formats are supported: |
|
* - [Wavefront obj file *.obj](https://en.wikipedia.org/wiki/Wavefront_.obj_file) (ONLY TRIANGULATED FACES) |
|
* @param filename Name of the file. |
|
* @param vertices (vector of Point3f) vertex coordinates of a mesh |
|
* @param normals (vector of Point3f) vertex normals of a mesh |
|
* @param indices (vector of vectors of int) vertex normals of a mesh |
|
*/ |
|
CV_EXPORTS_W void loadMesh(const String &filename, OutputArray vertices, OutputArray normals, OutputArrayOfArrays indices); |
|
|
|
/** @brief Saves a mesh to a specified file. |
|
* |
|
* The function saves mesh to the specified file. |
|
* File format is chosen based on the filename extension. |
|
* |
|
* @param filename Name of the file. |
|
* @param vertices (vector of Point3f) vertex coordinates of a mesh |
|
* @param normals (vector of Point3f) vertex normals of a mesh |
|
* @param indices (vector of vectors of int) vertex normals of a mesh |
|
*/ |
|
CV_EXPORTS_W void saveMesh(const String &filename, InputArray vertices, InputArray normals, InputArrayOfArrays indices); |
|
|
|
|
|
//! @} _3d |
|
} //end namespace cv |
|
|
|
#endif
|
|
|