mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
244 lines
8.0 KiB
244 lines
8.0 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// @Authors |
|
// Peng Xiao, pengxiao@outlook.com |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors as is and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
#include <map> |
|
#include <functional> |
|
#include "test_precomp.hpp" |
|
|
|
using namespace std; |
|
using namespace cvtest; |
|
using namespace testing; |
|
using namespace cv; |
|
|
|
|
|
namespace |
|
{ |
|
IMPLEMENT_PARAM_CLASS(IsGreaterThan, bool) |
|
IMPLEMENT_PARAM_CLASS(InputSize, int) |
|
IMPLEMENT_PARAM_CLASS(SortMethod, int) |
|
|
|
|
|
template<class T> |
|
struct KV_CVTYPE{ static int toType() {return 0;} }; |
|
|
|
template<> struct KV_CVTYPE<int> { static int toType() {return CV_32SC1;} }; |
|
template<> struct KV_CVTYPE<float>{ static int toType() {return CV_32FC1;} }; |
|
template<> struct KV_CVTYPE<Vec2i>{ static int toType() {return CV_32SC2;} }; |
|
template<> struct KV_CVTYPE<Vec2f>{ static int toType() {return CV_32FC2;} }; |
|
|
|
template<class key_type, class val_type> |
|
bool kvgreater(pair<key_type, val_type> p1, pair<key_type, val_type> p2) |
|
{ |
|
return p1.first > p2.first; |
|
} |
|
|
|
template<class key_type, class val_type> |
|
bool kvless(pair<key_type, val_type> p1, pair<key_type, val_type> p2) |
|
{ |
|
return p1.first < p2.first; |
|
} |
|
|
|
template<class key_type, class val_type> |
|
void toKVPair( |
|
MatConstIterator_<key_type> kit, |
|
MatConstIterator_<val_type> vit, |
|
int vecSize, |
|
vector<pair<key_type, val_type> >& kvres |
|
) |
|
{ |
|
kvres.clear(); |
|
for(int i = 0; i < vecSize; i ++) |
|
{ |
|
kvres.push_back(make_pair(*kit, *vit)); |
|
++kit; |
|
++vit; |
|
} |
|
} |
|
|
|
template<class key_type, class val_type> |
|
void kvquicksort(Mat& keys, Mat& vals, bool isGreater = false) |
|
{ |
|
vector<pair<key_type, val_type> > kvres; |
|
toKVPair(keys.begin<key_type>(), vals.begin<val_type>(), keys.cols, kvres); |
|
|
|
if(isGreater) |
|
{ |
|
std::sort(kvres.begin(), kvres.end(), kvgreater<key_type, val_type>); |
|
} |
|
else |
|
{ |
|
std::sort(kvres.begin(), kvres.end(), kvless<key_type, val_type>); |
|
} |
|
key_type * kptr = keys.ptr<key_type>(); |
|
val_type * vptr = vals.ptr<val_type>(); |
|
for(int i = 0; i < keys.cols; i ++) |
|
{ |
|
kptr[i] = kvres[i].first; |
|
vptr[i] = kvres[i].second; |
|
} |
|
} |
|
|
|
class SortByKey_STL |
|
{ |
|
public: |
|
static void sort(cv::Mat&, cv::Mat&, bool is_gt); |
|
private: |
|
typedef void (*quick_sorter)(cv::Mat&, cv::Mat&, bool); |
|
SortByKey_STL(); |
|
quick_sorter quick_sorters[CV_64FC4][CV_64FC4]; |
|
static SortByKey_STL instance; |
|
}; |
|
|
|
SortByKey_STL SortByKey_STL::instance = SortByKey_STL(); |
|
|
|
SortByKey_STL::SortByKey_STL() |
|
{ |
|
memset(instance.quick_sorters, 0, sizeof(quick_sorters)); |
|
#define NEW_SORTER(KT, VT) \ |
|
instance.quick_sorters[KV_CVTYPE<KT>::toType()][KV_CVTYPE<VT>::toType()] = kvquicksort<KT, VT>; |
|
|
|
NEW_SORTER(int, int); |
|
NEW_SORTER(int, Vec2i); |
|
NEW_SORTER(int, float); |
|
NEW_SORTER(int, Vec2f); |
|
|
|
NEW_SORTER(float, int); |
|
NEW_SORTER(float, Vec2i); |
|
NEW_SORTER(float, float); |
|
NEW_SORTER(float, Vec2f); |
|
#undef NEW_SORTER |
|
} |
|
|
|
void SortByKey_STL::sort(cv::Mat& keys, cv::Mat& vals, bool is_gt) |
|
{ |
|
instance.quick_sorters[keys.type()][vals.type()](keys, vals, is_gt); |
|
} |
|
|
|
bool checkUnstableSorterResult(const Mat& gkeys_, const Mat& gvals_, |
|
const Mat& /*dkeys_*/, const Mat& dvals_) |
|
{ |
|
int cn_val = gvals_.channels(); |
|
int count = gkeys_.cols; |
|
|
|
//for convenience we convert depth to float and channels to 1 |
|
Mat gkeys, gvals, dkeys, dvals; |
|
gkeys_.reshape(1).convertTo(gkeys, CV_32F); |
|
gvals_.reshape(1).convertTo(gvals, CV_32F); |
|
//dkeys_.reshape(1).convertTo(dkeys, CV_32F); |
|
dvals_.reshape(1).convertTo(dvals, CV_32F); |
|
float * gkptr = gkeys.ptr<float>(); |
|
float * gvptr = gvals.ptr<float>(); |
|
//float * dkptr = dkeys.ptr<float>(); |
|
float * dvptr = dvals.ptr<float>(); |
|
|
|
for(int i = 0; i < count - 1; ++i) |
|
{ |
|
int iden_count = 0; |
|
// firstly calculate the number of identical keys |
|
while(gkptr[i + iden_count] == gkptr[i + 1 + iden_count]) |
|
{ |
|
++ iden_count; |
|
} |
|
|
|
// sort dv and gv |
|
int num_of_val = (iden_count + 1) * cn_val; |
|
std::sort(gvptr + i * cn_val, gvptr + i * cn_val + num_of_val); |
|
std::sort(dvptr + i * cn_val, dvptr + i * cn_val + num_of_val); |
|
|
|
// then check if [i, i + iden_count) is the same |
|
for(int j = 0; j < num_of_val; ++j) |
|
{ |
|
if(gvptr[i + j] != dvptr[i + j]) |
|
{ |
|
return false; |
|
} |
|
} |
|
i += iden_count; |
|
} |
|
return true; |
|
} |
|
} |
|
|
|
#define INPUT_SIZES Values(InputSize(0x10), InputSize(0x100), InputSize(0x10000)) //2^4, 2^8, 2^16 |
|
#define KEY_TYPES Values(MatType(CV_32SC1), MatType(CV_32FC1)) |
|
#define VAL_TYPES Values(MatType(CV_32SC1), MatType(CV_32SC2), MatType(CV_32FC1), MatType(CV_32FC2)) |
|
#define SORT_METHODS Values(SortMethod(cv::ocl::SORT_BITONIC),SortMethod(cv::ocl::SORT_MERGE),SortMethod(cv::ocl::SORT_RADIX)/*,SortMethod(cv::ocl::SORT_SELECTION)*/) |
|
#define F_OR_T Values(IsGreaterThan(false), IsGreaterThan(true)) |
|
|
|
PARAM_TEST_CASE(SortByKey, InputSize, MatType, MatType, SortMethod, IsGreaterThan) |
|
{ |
|
InputSize input_size; |
|
MatType key_type, val_type; |
|
SortMethod method; |
|
IsGreaterThan is_gt; |
|
|
|
Mat mat_key, mat_val; |
|
virtual void SetUp() |
|
{ |
|
input_size = GET_PARAM(0); |
|
key_type = GET_PARAM(1); |
|
val_type = GET_PARAM(2); |
|
method = GET_PARAM(3); |
|
is_gt = GET_PARAM(4); |
|
|
|
using namespace cv; |
|
// fill key and val |
|
mat_key = randomMat(Size(input_size, 1), key_type, INT_MIN, INT_MAX); |
|
mat_val = randomMat(Size(input_size, 1), val_type, INT_MIN, INT_MAX); |
|
} |
|
}; |
|
|
|
OCL_TEST_P(SortByKey, Accuracy) |
|
{ |
|
using namespace cv; |
|
ocl::oclMat oclmat_key(mat_key); |
|
ocl::oclMat oclmat_val(mat_val); |
|
|
|
ocl::sortByKey(oclmat_key, oclmat_val, method, is_gt); |
|
SortByKey_STL::sort(mat_key, mat_val, is_gt); |
|
|
|
EXPECT_MAT_NEAR(mat_key, oclmat_key, 0.0); |
|
EXPECT_TRUE(checkUnstableSorterResult(mat_key, mat_val, oclmat_key, oclmat_val)); |
|
} |
|
INSTANTIATE_TEST_CASE_P(OCL_SORT, SortByKey, Combine(INPUT_SIZES, KEY_TYPES, VAL_TYPES, SORT_METHODS, F_OR_T));
|
|
|