Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

476 lines
12 KiB

/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#include <stdexcept>
#include <vector>
#include "flann.h"
#include "timer.h"
#include "common.h"
#include "logger.h"
#include "index_testing.h"
#include "saving.h"
#include "object_factory.h"
// index types
#include "kdtree_index.h"
#include "kmeans_index.h"
#include "composite_index.h"
#include "linear_index.h"
#include "autotuned_index.h"
#include <typeinfo>
using namespace std;
#include "flann.h"
#ifdef WIN32
#define EXPORTED extern "C" __declspec(dllexport)
#else
#define EXPORTED extern "C"
#endif
namespace cvflann
{
typedef ObjectFactory<IndexParams, flann_algorithm_t> ParamsFactory;
IndexParams* IndexParams::createFromParameters(const FLANNParameters& p)
{
IndexParams* params = ParamsFactory::instance().create(p.algorithm);
params->fromParameters(p);
return params;
}
NNIndex* LinearIndexParams::createIndex(const Matrix<float>& dataset) const
{
return new LinearIndex(dataset, *this);
}
NNIndex* KDTreeIndexParams::createIndex(const Matrix<float>& dataset) const
{
return new KDTreeIndex(dataset, *this);
}
NNIndex* KMeansIndexParams::createIndex(const Matrix<float>& dataset) const
{
return new KMeansIndex(dataset, *this);
}
NNIndex* CompositeIndexParams::createIndex(const Matrix<float>& dataset) const
{
return new CompositeIndex(dataset, *this);
}
NNIndex* AutotunedIndexParams::createIndex(const Matrix<float>& dataset) const
{
return new AutotunedIndex(dataset, *this);
}
NNIndex* SavedIndexParams::createIndex(const Matrix<float>& dataset) const
{
FILE* fin = fopen(filename.c_str(), "rb");
if (fin==NULL) {
return NULL;
}
IndexHeader header = load_header(fin);
rewind(fin);
IndexParams* params = ParamsFactory::instance().create(header.index_type);
NNIndex* nnIndex = params->createIndex(dataset);
nnIndex->loadIndex(fin);
fclose(fin);
delete params; //?
return nnIndex;
}
class StaticInit
{
public:
StaticInit()
{
ParamsFactory::instance().register_<LinearIndexParams>(LINEAR);
ParamsFactory::instance().register_<KDTreeIndexParams>(KDTREE);
ParamsFactory::instance().register_<KMeansIndexParams>(KMEANS);
ParamsFactory::instance().register_<CompositeIndexParams>(COMPOSITE);
ParamsFactory::instance().register_<AutotunedIndexParams>(AUTOTUNED);
ParamsFactory::instance().register_<SavedIndexParams>(SAVED);
}
};
StaticInit __init;
Index::Index(const Matrix<float>& dataset, const IndexParams& params)
{
nnIndex = params.createIndex(dataset);
nnIndex->buildIndex();
}
Index::~Index()
{
delete nnIndex;
}
void Index::knnSearch(const Matrix<float>& queries, Matrix<int>& indices, Matrix<float>& dists, int knn, const SearchParams& searchParams)
{
assert(queries.cols==nnIndex->veclen());
assert(indices.rows>=queries.rows);
assert(dists.rows>=queries.rows);
assert(indices.cols>=knn);
assert(dists.cols>=knn);
search_for_neighbors(*nnIndex, queries, indices, dists, searchParams);
}
int Index::radiusSearch(const Matrix<float>& query, Matrix<int> indices, Matrix<float> dists, float radius, const SearchParams& searchParams)
{
if (query.rows!=1) {
printf("I can only search one feature at a time for range search\n");
return -1;
}
assert(query.cols==nnIndex->veclen());
RadiusResultSet resultSet(radius);
resultSet.init(query.data, query.cols);
nnIndex->findNeighbors(resultSet,query.data,searchParams);
// TODO: optimize here
int* neighbors = resultSet.getNeighbors();
float* distances = resultSet.getDistances();
int count_nn = min((long)resultSet.size(), indices.cols);
assert (dists.cols>=count_nn);
for (int i=0;i<count_nn;++i) {
indices[0][i] = neighbors[i];
dists[0][i] = distances[i];
}
return count_nn;
}
void Index::save(string filename)
{
FILE* fout = fopen(filename.c_str(), "wb");
if (fout==NULL) {
logger.error("Cannot open file: %s", filename.c_str());
throw FLANNException("Cannot open file");
}
nnIndex->saveIndex(fout);
fclose(fout);
}
int Index::size() const
{
return nnIndex->size();
}
int Index::veclen() const
{
return nnIndex->veclen();
}
int hierarchicalClustering(const Matrix<float>& features, Matrix<float>& centers, const KMeansIndexParams& params)
{
KMeansIndex kmeans(features, params);
kmeans.buildIndex();
int clusterNum = kmeans.getClusterCenters(centers);
return clusterNum;
}
} // namespace FLANN
using namespace cvflann;
typedef NNIndex* NNIndexPtr;
typedef Matrix<float>* MatrixPtr;
void init_flann_parameters(FLANNParameters* p)
{
if (p != NULL) {
flann_log_verbosity(p->log_level);
if (p->random_seed>0) {
seed_random(p->random_seed);
}
}
}
EXPORTED void flann_log_verbosity(int level)
{
if (level>=0) {
logger.setLevel(level);
}
}
EXPORTED void flann_set_distance_type(flann_distance_t distance_type, int order)
{
flann_distance_type = distance_type;
flann_minkowski_order = order;
}
EXPORTED flann_index_t flann_build_index(float* dataset, int rows, int cols, float* /*speedup*/, FLANNParameters* flann_params)
{
try {
init_flann_parameters(flann_params);
if (flann_params == NULL) {
throw FLANNException("The flann_params argument must be non-null");
}
IndexParams* params = IndexParams::createFromParameters(*flann_params);
Index* index = new Index(Matrix<float>(rows,cols,dataset), *params);
return index;
}
catch (runtime_error& e) {
logger.error("Caught exception: %s\n",e.what());
return NULL;
}
}
EXPORTED int flann_save_index(flann_index_t index_ptr, char* filename)
{
try {
if (index_ptr==NULL) {
throw FLANNException("Invalid index");
}
Index* index = (Index*)index_ptr;
index->save(filename);
return 0;
}
catch(runtime_error& e) {
logger.error("Caught exception: %s\n",e.what());
return -1;
}
}
EXPORTED FLANN_INDEX flann_load_index(char* filename, float* dataset, int rows, int cols)
{
try {
Index* index = new Index(Matrix<float>(rows,cols,dataset), SavedIndexParams(filename));
return index;
}
catch(runtime_error& e) {
logger.error("Caught exception: %s\n",e.what());
return NULL;
}
}
EXPORTED int flann_find_nearest_neighbors(float* dataset, int rows, int cols, float* testset, int tcount, int* result, float* dists, int nn, FLANNParameters* flann_params)
{
int _result = 0;
try {
init_flann_parameters(flann_params);
IndexParams* params = IndexParams::createFromParameters(*flann_params);
Index* index = new Index(Matrix<float>(rows,cols,dataset), *params);
Matrix<int> m_indices(tcount, nn, result);
Matrix<float> m_dists(tcount, nn, dists);
index->knnSearch(Matrix<float>(tcount, index->veclen(), testset),
m_indices,
m_dists, nn, SearchParams(flann_params->checks) );
}
catch(runtime_error& e) {
logger.error("Caught exception: %s\n",e.what());
_result = -1;
}
return _result;
}
EXPORTED int flann_find_nearest_neighbors_index(flann_index_t index_ptr, float* testset, int tcount, int* result, float* dists, int nn, int checks, FLANNParameters* flann_params)
{
try {
init_flann_parameters(flann_params);
if (index_ptr==NULL) {
throw FLANNException("Invalid index");
}
Index* index = (Index*) index_ptr;
Matrix<int> m_indices(tcount, nn, result);
Matrix<float> m_dists(tcount, nn, dists);
index->knnSearch(Matrix<float>(tcount, index->veclen(), testset),
m_indices,
m_dists, nn, SearchParams(checks) );
}
catch(runtime_error& e) {
logger.error("Caught exception: %s\n",e.what());
return -1;
}
return -1;
}
EXPORTED int flann_radius_search(FLANN_INDEX index_ptr,
float* query,
int* indices,
float* dists,
int max_nn,
float radius,
int checks,
FLANNParameters* flann_params)
{
try {
init_flann_parameters(flann_params);
if (index_ptr==NULL) {
throw FLANNException("Invalid index");
}
Index* index = (Index*) index_ptr;
Matrix<int> m_indices(1, max_nn, indices);
Matrix<float> m_dists(1, max_nn, dists);
int count = index->radiusSearch(Matrix<float>(1, index->veclen(), query),
m_indices,
m_dists, radius, SearchParams(checks) );
return count;
}
catch(runtime_error& e) {
logger.error("Caught exception: %s\n",e.what());
return -1;
}
}
EXPORTED int flann_free_index(FLANN_INDEX index_ptr, FLANNParameters* flann_params)
{
try {
init_flann_parameters(flann_params);
if (index_ptr==NULL) {
throw FLANNException("Invalid index");
}
Index* index = (Index*) index_ptr;
delete index;
return 0;
}
catch(runtime_error& e) {
logger.error("Caught exception: %s\n",e.what());
return -1;
}
}
EXPORTED int flann_compute_cluster_centers(float* dataset, int rows, int cols, int clusters, float* result, FLANNParameters* flann_params)
{
try {
init_flann_parameters(flann_params);
MatrixPtr inputData = new Matrix<float>(rows,cols,dataset);
KMeansIndexParams params(flann_params->branching, flann_params->iterations, flann_params->centers_init, flann_params->cb_index);
Matrix<float> centers(clusters, cols, result);
int clusterNum = hierarchicalClustering(*inputData,centers, params);
return clusterNum;
} catch (runtime_error& e) {
logger.error("Caught exception: %s\n",e.what());
return -1;
}
}
EXPORTED void compute_ground_truth_float(float* dataset, int dshape[], float* testset, int tshape[], int* match, int mshape[], int skip)
{
assert(dshape[1]==tshape[1]);
assert(tshape[0]==mshape[0]);
Matrix<int> _match(mshape[0], mshape[1], match);
compute_ground_truth(Matrix<float>(dshape[0], dshape[1], dataset), Matrix<float>(tshape[0], tshape[1], testset), _match, skip);
}
EXPORTED float test_with_precision(FLANN_INDEX index_ptr, float* dataset, int dshape[], float* testset, int tshape[], int* matches, int mshape[],
int nn, float precision, int* checks, int skip = 0)
{
assert(dshape[1]==tshape[1]);
assert(tshape[0]==mshape[0]);
try {
if (index_ptr==NULL) {
throw FLANNException("Invalid index");
}
NNIndexPtr index = (NNIndexPtr)index_ptr;
return test_index_precision(*index, Matrix<float>(dshape[0], dshape[1],dataset), Matrix<float>(tshape[0], tshape[1], testset),
Matrix<int>(mshape[0],mshape[1],matches), precision, *checks, nn, skip);
} catch (runtime_error& e) {
logger.error("Caught exception: %s\n",e.what());
return -1;
}
}
EXPORTED float test_with_checks(FLANN_INDEX index_ptr, float* dataset, int dshape[], float* testset, int tshape[], int* matches, int mshape[],
int nn, int checks, float* precision, int skip = 0)
{
assert(dshape[1]==tshape[1]);
assert(tshape[0]==mshape[0]);
try {
if (index_ptr==NULL) {
throw FLANNException("Invalid index");
}
NNIndexPtr index = (NNIndexPtr)index_ptr;
return test_index_checks(*index, Matrix<float>(dshape[0], dshape[1],dataset), Matrix<float>(tshape[0], tshape[1], testset),
Matrix<int>(mshape[0],mshape[1],matches), checks, *precision, nn, skip);
} catch (runtime_error& e) {
logger.error("Caught exception: %s\n",e.what());
return -1;
}
}