7.8 KiB
Remapping
Goal
In this tutorial you will learn how to:
a. Use the OpenCV function @ref cv::remap to implement simple remapping routines.
Theory
What is remapping?
-
It is the process of taking pixels from one place in the image and locating them in another position in a new image.
-
To accomplish the mapping process, it might be necessary to do some interpolation for non-integer pixel locations, since there will not always be a one-to-one-pixel correspondence between source and destination images.
-
We can express the remap for every pixel location \f$(x,y)\f$ as:
\f[g(x,y) = f ( h(x,y) )\f]
where \f$g()\f$ is the remapped image, \f$f()\f$ the source image and \f$h(x,y)\f$ is the mapping function that operates on \f$(x,y)\f$.
-
Let's think in a quick example. Imagine that we have an image \f$I\f$ and, say, we want to do a remap such that:
\f[h(x,y) = (I.cols - x, y )\f]
What would happen? It is easily seen that the image would flip in the \f$x\f$ direction. For instance, consider the input image:
observe how the red circle changes positions with respect to x (considering \f$x\f$ the horizontal direction):
-
In OpenCV, the function @ref cv::remap offers a simple remapping implementation.
Code
-
What does this program do?
- Loads an image
- Each second, apply 1 of 4 different remapping processes to the image and display them indefinitely in a window.
- Wait for the user to exit the program
-
The tutorial code's is shown lines below. You can also download it from here @code{.cpp} #include "opencv2/highgui.hpp" #include "opencv2/imgproc.hpp" #include #include <stdio.h>
using namespace cv;
/// Global variables Mat src, dst; Mat map_x, map_y; char* remap_window = "Remap demo"; int ind = 0;
/// Function Headers void update_map( void );
/*
- @function main / int main( int argc, char* argv ) { /// Load the image src = imread( argv[1], 1 );
/// Create dst, map_x and map_y with the same size as src: dst.create( src.size(), src.type() ); map_x.create( src.size(), CV_32FC1 ); map_y.create( src.size(), CV_32FC1 );
/// Create window namedWindow( remap_window, WINDOW_AUTOSIZE );
/// Loop while( true ) { /// Each 1 sec. Press ESC to exit the program int c = waitKey( 1000 );
if( (char)c == 27 ) { break; }
/// Update map_x & map_y. Then apply remap update_map(); remap( src, dst, map_x, map_y, INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0) );
/// Display results imshow( remap_window, dst ); } return 0; }
/*
-
@function update_map
-
@brief Fill the map_x and map_y matrices with 4 types of mappings */ void update_map( void ) { ind = ind%4;
for( int j = 0; j < src.rows; j++ ) { for( int i = 0; i < src.cols; i++ ) { switch( ind ) { case 0: if( i > src.cols0.25 && i < src.cols0.75 && j > src.rows0.25 && j < src.rows0.75 ) { map_x.at(j,i) = 2*( i - src.cols0.25 ) + 0.5 ; map_y.at(j,i) = 2( j - src.rows*0.25 ) + 0.5 ; } else { map_x.at(j,i) = 0 ; map_y.at(j,i) = 0 ; } break; case 1: map_x.at(j,i) = i ; map_y.at(j,i) = src.rows - j ; break; case 2: map_x.at(j,i) = src.cols - i ; map_y.at(j,i) = j ; break; case 3: map_x.at(j,i) = src.cols - i ; map_y.at(j,i) = src.rows - j ; break; } // end of switch } } ind++; @endcode }
Explanation
-
Create some variables we will use: @code{.cpp} Mat src, dst; Mat map_x, map_y; char* remap_window = "Remap demo"; int ind = 0; @endcode
-
Load an image: @code{.cpp} src = imread( argv[1], 1 ); @endcode
-
Create the destination image and the two mapping matrices (for x and y ) @code{.cpp} dst.create( src.size(), src.type() ); map_x.create( src.size(), CV_32FC1 ); map_y.create( src.size(), CV_32FC1 ); @endcode
-
Create a window to display results @code{.cpp} namedWindow( remap_window, WINDOW_AUTOSIZE ); @endcode
-
Establish a loop. Each 1000 ms we update our mapping matrices (mat_x and mat_y) and apply them to our source image: @code{.cpp} while( true ) { /// Each 1 sec. Press ESC to exit the program int c = waitKey( 1000 );
if( (char)c == 27 ) { break; }
/// Update map_x & map_y. Then apply remap update_map(); remap( src, dst, map_x, map_y, INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0) );
/// Display results imshow( remap_window, dst ); } @endcode The function that applies the remapping is @ref cv::remap . We give the following arguments:
- src: Source image
- dst: Destination image of same size as src
- map_x: The mapping function in the x direction. It is equivalent to the first component of \f$h(i,j)\f$
- map_y: Same as above, but in y direction. Note that map_y and map_x are both of the same size as src
- INTER_LINEAR: The type of interpolation to use for non-integer pixels. This is by default.
- BORDER_CONSTANT: Default
How do we update our mapping matrices mat_x and mat_y? Go on reading:
-
Updating the mapping matrices: We are going to perform 4 different mappings: -# Reduce the picture to half its size and will display it in the middle:
\f[h(i,j) = ( 2*i - src.cols/2 + 0.5, 2*j - src.rows/2 + 0.5)\f] for all pairs \f$(i,j)\f$ such that: \f$\dfrac{src.cols}{4}<i<\dfrac{3 \cdot src.cols}{4}\f$ and \f$\dfrac{src.rows}{4}<j<\dfrac{3 \cdot src.rows}{4}\f$
-# Turn the image upside down: \f$h( i, j ) = (i, src.rows - j)\f$ -# Reflect the image from left to right: \f$h(i,j) = ( src.cols - i, j )\f$ -# Combination of b and c: \f$h(i,j) = ( src.cols - i, src.rows - j )\f$
This is expressed in the following snippet. Here, map_x represents the first coordinate of h(i,j) and map_y the second coordinate. @code{.cpp} for( int j = 0; j < src.rows; j++ ) { for( int i = 0; i < src.cols; i++ ) { switch( ind ) { case 0: if( i > src.cols0.25 && i < src.cols0.75 && j > src.rows0.25 && j < src.rows0.75 ) { map_x.at(j,i) = 2*( i - src.cols0.25 ) + 0.5 ; map_y.at(j,i) = 2( j - src.rows*0.25 ) + 0.5 ; } else { map_x.at(j,i) = 0 ; map_y.at(j,i) = 0 ; } break; case 1: map_x.at(j,i) = i ; map_y.at(j,i) = src.rows - j ; break; case 2: map_x.at(j,i) = src.cols - i ; map_y.at(j,i) = j ; break; case 3: map_x.at(j,i) = src.cols - i ; map_y.at(j,i) = src.rows - j ; break; } // end of switch } } ind++; } @endcode Result
-
After compiling the code above, you can execute it giving as argument an image path. For instance, by using the following image:
-
This is the result of reducing it to half the size and centering it:
-
Turning it upside down:
-
Reflecting it in the x direction:
-
Reflecting it in both directions: