2.2 KiB
Feature Description
Goal
In this tutorial you will learn how to:
- Use the @ref cv::DescriptorExtractor interface in order to find the feature vector correspondent to the keypoints. Specifically:
Theory
Code
This tutorial code's is shown lines below. @code{.cpp} #include <stdio.h> #include #include "opencv2/core.hpp" #include "opencv2/features2d.hpp" #include "opencv2/highgui.hpp" #include "opencv2/xfeatures2d.hpp"
using namespace cv; using namespace cv::xfeatures2d;
void readme();
/* @function main / int main( int argc, char* argv ) { if( argc != 3 ) { return -1; }
Mat img_1 = imread( argv[1], IMREAD_GRAYSCALE ); Mat img_2 = imread( argv[2], IMREAD_GRAYSCALE );
if( !img_1.data || !img_2.data ) { return -1; }
//-- Step 1: Detect the keypoints using SURF Detector, compute the descriptors int minHessian = 400;
Ptr detector = SURF::create(); detector->setMinHessian(minHessian);
std::vector keypoints_1, keypoints_2; Mat descriptors_1, descriptors_2;
detector->detectAndCompute( img_1, keypoints_1, descriptors_1 ); detector->detectAndCompute( img_2, keypoints_2, descriptors_2 );
//-- Step 2: Matching descriptor vectors with a brute force matcher BFMatcher matcher(NORM_L2); std::vector< DMatch > matches; matcher.match( descriptors_1, descriptors_2, matches );
//-- Draw matches Mat img_matches; drawMatches( img_1, keypoints_1, img_2, keypoints_2, matches, img_matches );
//-- Show detected matches imshow("Matches", img_matches );
waitKey(0);
return 0; }
/* @function readme */ void readme() { std::cout << " Usage: ./SURF_descriptor " << std::endl; } @endcode
Explanation
Result
Here is the result after applying the BruteForce matcher between the two original images: