Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
232 lines
7.5 KiB
232 lines
7.5 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2008, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
/* |
|
OpenCV wrapper of reference implementation of |
|
[1] Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces. |
|
Pablo F. Alcantarilla, J. Nuevo and Adrien Bartoli. |
|
In British Machine Vision Conference (BMVC), Bristol, UK, September 2013 |
|
http://www.robesafe.com/personal/pablo.alcantarilla/papers/Alcantarilla13bmvc.pdf |
|
@author Eugene Khvedchenya <ekhvedchenya@gmail.com> |
|
*/ |
|
|
|
#include "precomp.hpp" |
|
#include "akaze/AKAZEFeatures.h" |
|
|
|
namespace cv |
|
{ |
|
AKAZE::AKAZE() |
|
: descriptor(DESCRIPTOR_MLDB) |
|
, descriptor_channels(3) |
|
, descriptor_size(0) |
|
{ |
|
} |
|
|
|
AKAZE::AKAZE(DESCRIPTOR_TYPE descriptor_type, int _descriptor_size, int _descriptor_channels) |
|
: descriptor(descriptor_type) |
|
, descriptor_channels(_descriptor_channels) |
|
, descriptor_size(_descriptor_size) |
|
{ |
|
|
|
} |
|
|
|
AKAZE::~AKAZE() |
|
{ |
|
|
|
} |
|
|
|
// returns the descriptor size in bytes |
|
int AKAZE::descriptorSize() const |
|
{ |
|
switch (descriptor) |
|
{ |
|
case cv::AKAZE::DESCRIPTOR_KAZE: |
|
case cv::AKAZE::DESCRIPTOR_KAZE_UPRIGHT: |
|
return 64; |
|
|
|
case cv::AKAZE::DESCRIPTOR_MLDB: |
|
case cv::AKAZE::DESCRIPTOR_MLDB_UPRIGHT: |
|
// We use the full length binary descriptor -> 486 bits |
|
if (descriptor_size == 0) |
|
{ |
|
int t = (6 + 36 + 120) * descriptor_channels; |
|
return (int)ceil(t / 8.); |
|
} |
|
else |
|
{ |
|
// We use the random bit selection length binary descriptor |
|
return (int)ceil(descriptor_size / 8.); |
|
} |
|
|
|
default: |
|
return -1; |
|
} |
|
} |
|
|
|
// returns the descriptor type |
|
int AKAZE::descriptorType() const |
|
{ |
|
switch (descriptor) |
|
{ |
|
case cv::AKAZE::DESCRIPTOR_KAZE: |
|
case cv::AKAZE::DESCRIPTOR_KAZE_UPRIGHT: |
|
return CV_32F; |
|
|
|
case cv::AKAZE::DESCRIPTOR_MLDB: |
|
case cv::AKAZE::DESCRIPTOR_MLDB_UPRIGHT: |
|
return CV_8U; |
|
|
|
default: |
|
return -1; |
|
} |
|
} |
|
|
|
// returns the default norm type |
|
int AKAZE::defaultNorm() const |
|
{ |
|
switch (descriptor) |
|
{ |
|
case cv::AKAZE::DESCRIPTOR_KAZE: |
|
case cv::AKAZE::DESCRIPTOR_KAZE_UPRIGHT: |
|
return cv::NORM_L2; |
|
|
|
case cv::AKAZE::DESCRIPTOR_MLDB: |
|
case cv::AKAZE::DESCRIPTOR_MLDB_UPRIGHT: |
|
return cv::NORM_HAMMING; |
|
|
|
default: |
|
return -1; |
|
} |
|
} |
|
|
|
|
|
void AKAZE::operator()(InputArray image, InputArray mask, |
|
std::vector<KeyPoint>& keypoints, |
|
OutputArray descriptors, |
|
bool useProvidedKeypoints) const |
|
{ |
|
cv::Mat img = image.getMat(); |
|
if (img.type() != CV_8UC1) |
|
cvtColor(image, img, COLOR_BGR2GRAY); |
|
|
|
Mat img1_32; |
|
img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0); |
|
|
|
cv::Mat& desc = descriptors.getMatRef(); |
|
|
|
AKAZEOptions options; |
|
options.descriptor = static_cast<DESCRIPTOR_TYPE>(descriptor); |
|
options.descriptor_channels = descriptor_channels; |
|
options.descriptor_size = descriptor_size; |
|
options.img_width = img.cols; |
|
options.img_height = img.rows; |
|
|
|
AKAZEFeatures impl(options); |
|
impl.Create_Nonlinear_Scale_Space(img1_32); |
|
|
|
if (!useProvidedKeypoints) |
|
{ |
|
impl.Feature_Detection(keypoints); |
|
} |
|
|
|
if (!mask.empty()) |
|
{ |
|
cv::KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat()); |
|
} |
|
|
|
impl.Compute_Descriptors(keypoints, desc); |
|
|
|
CV_Assert((!desc.rows || desc.cols == descriptorSize())); |
|
CV_Assert((!desc.rows || (desc.type() == descriptorType()))); |
|
} |
|
|
|
void AKAZE::detectImpl(InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask) const |
|
{ |
|
cv::Mat img = image.getMat(); |
|
if (img.type() != CV_8UC1) |
|
cvtColor(image, img, COLOR_BGR2GRAY); |
|
|
|
Mat img1_32; |
|
img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0); |
|
|
|
AKAZEOptions options; |
|
options.descriptor = static_cast<DESCRIPTOR_TYPE>(descriptor); |
|
options.descriptor_channels = descriptor_channels; |
|
options.descriptor_size = descriptor_size; |
|
options.img_width = img.cols; |
|
options.img_height = img.rows; |
|
|
|
AKAZEFeatures impl(options); |
|
impl.Create_Nonlinear_Scale_Space(img1_32); |
|
impl.Feature_Detection(keypoints); |
|
|
|
if (!mask.empty()) |
|
{ |
|
cv::KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat()); |
|
} |
|
} |
|
|
|
void AKAZE::computeImpl(InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const |
|
{ |
|
cv::Mat img = image.getMat(); |
|
if (img.type() != CV_8UC1) |
|
cvtColor(image, img, COLOR_BGR2GRAY); |
|
|
|
Mat img1_32; |
|
img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0); |
|
|
|
cv::Mat& desc = descriptors.getMatRef(); |
|
|
|
AKAZEOptions options; |
|
options.descriptor = static_cast<DESCRIPTOR_TYPE>(descriptor); |
|
options.descriptor_channels = descriptor_channels; |
|
options.descriptor_size = descriptor_size; |
|
options.img_width = img.cols; |
|
options.img_height = img.rows; |
|
|
|
AKAZEFeatures impl(options); |
|
impl.Create_Nonlinear_Scale_Space(img1_32); |
|
impl.Compute_Descriptors(keypoints, desc); |
|
|
|
CV_Assert((!desc.rows || desc.cols == descriptorSize())); |
|
CV_Assert((!desc.rows || (desc.type() == descriptorType()))); |
|
} |
|
} |