mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
727 lines
26 KiB
727 lines
26 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
using cv::ml::TrainData; |
|
using cv::ml::EM; |
|
using cv::ml::KNearest; |
|
|
|
void defaultDistribs( Mat& means, vector<Mat>& covs, int type=CV_32FC1 ) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
float mp0[] = {0.0f, 0.0f}, cp0[] = {0.67f, 0.0f, 0.0f, 0.67f}; |
|
float mp1[] = {5.0f, 0.0f}, cp1[] = {1.0f, 0.0f, 0.0f, 1.0f}; |
|
float mp2[] = {1.0f, 5.0f}, cp2[] = {1.0f, 0.0f, 0.0f, 1.0f}; |
|
means.create(3, 2, type); |
|
Mat m0( 1, 2, CV_32FC1, mp0 ), c0( 2, 2, CV_32FC1, cp0 ); |
|
Mat m1( 1, 2, CV_32FC1, mp1 ), c1( 2, 2, CV_32FC1, cp1 ); |
|
Mat m2( 1, 2, CV_32FC1, mp2 ), c2( 2, 2, CV_32FC1, cp2 ); |
|
means.resize(3), covs.resize(3); |
|
|
|
Mat mr0 = means.row(0); |
|
m0.convertTo(mr0, type); |
|
c0.convertTo(covs[0], type); |
|
|
|
Mat mr1 = means.row(1); |
|
m1.convertTo(mr1, type); |
|
c1.convertTo(covs[1], type); |
|
|
|
Mat mr2 = means.row(2); |
|
m2.convertTo(mr2, type); |
|
c2.convertTo(covs[2], type); |
|
} |
|
|
|
// generate points sets by normal distributions |
|
void generateData( Mat& data, Mat& labels, const vector<int>& sizes, const Mat& _means, const vector<Mat>& covs, int dataType, int labelType ) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
vector<int>::const_iterator sit = sizes.begin(); |
|
int total = 0; |
|
for( ; sit != sizes.end(); ++sit ) |
|
total += *sit; |
|
CV_Assert( _means.rows == (int)sizes.size() && covs.size() == sizes.size() ); |
|
CV_Assert( !data.empty() && data.rows == total ); |
|
CV_Assert( data.type() == dataType ); |
|
|
|
labels.create( data.rows, 1, labelType ); |
|
|
|
randn( data, Scalar::all(-1.0), Scalar::all(1.0) ); |
|
vector<Mat> means(sizes.size()); |
|
for(int i = 0; i < _means.rows; i++) |
|
means[i] = _means.row(i); |
|
vector<Mat>::const_iterator mit = means.begin(), cit = covs.begin(); |
|
int bi, ei = 0; |
|
sit = sizes.begin(); |
|
for( int p = 0, l = 0; sit != sizes.end(); ++sit, ++mit, ++cit, l++ ) |
|
{ |
|
bi = ei; |
|
ei = bi + *sit; |
|
assert( mit->rows == 1 && mit->cols == data.cols ); |
|
assert( cit->rows == data.cols && cit->cols == data.cols ); |
|
for( int i = bi; i < ei; i++, p++ ) |
|
{ |
|
Mat r = data.row(i); |
|
r = r * (*cit) + *mit; |
|
if( labelType == CV_32FC1 ) |
|
labels.at<float>(p, 0) = (float)l; |
|
else if( labelType == CV_32SC1 ) |
|
labels.at<int>(p, 0) = l; |
|
else |
|
{ |
|
CV_DbgAssert(0); |
|
} |
|
} |
|
} |
|
} |
|
|
|
int maxIdx( const vector<int>& count ) |
|
{ |
|
int idx = -1; |
|
int maxVal = -1; |
|
vector<int>::const_iterator it = count.begin(); |
|
for( int i = 0; it != count.end(); ++it, i++ ) |
|
{ |
|
if( *it > maxVal) |
|
{ |
|
maxVal = *it; |
|
idx = i; |
|
} |
|
} |
|
assert( idx >= 0); |
|
return idx; |
|
} |
|
|
|
bool getLabelsMap( const Mat& labels, const vector<int>& sizes, vector<int>& labelsMap, bool checkClusterUniq=true ) |
|
{ |
|
size_t total = 0, nclusters = sizes.size(); |
|
for(size_t i = 0; i < sizes.size(); i++) |
|
total += sizes[i]; |
|
|
|
assert( !labels.empty() ); |
|
assert( labels.total() == total && (labels.cols == 1 || labels.rows == 1)); |
|
assert( labels.type() == CV_32SC1 || labels.type() == CV_32FC1 ); |
|
|
|
bool isFlt = labels.type() == CV_32FC1; |
|
|
|
labelsMap.resize(nclusters); |
|
|
|
vector<bool> buzy(nclusters, false); |
|
int startIndex = 0; |
|
for( size_t clusterIndex = 0; clusterIndex < sizes.size(); clusterIndex++ ) |
|
{ |
|
vector<int> count( nclusters, 0 ); |
|
for( int i = startIndex; i < startIndex + sizes[clusterIndex]; i++) |
|
{ |
|
int lbl = isFlt ? (int)labels.at<float>(i) : labels.at<int>(i); |
|
CV_Assert(lbl < (int)nclusters); |
|
count[lbl]++; |
|
CV_Assert(count[lbl] < (int)total); |
|
} |
|
startIndex += sizes[clusterIndex]; |
|
|
|
int cls = maxIdx( count ); |
|
CV_Assert( !checkClusterUniq || !buzy[cls] ); |
|
|
|
labelsMap[clusterIndex] = cls; |
|
|
|
buzy[cls] = true; |
|
} |
|
|
|
if(checkClusterUniq) |
|
{ |
|
for(size_t i = 0; i < buzy.size(); i++) |
|
if(!buzy[i]) |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool calcErr( const Mat& labels, const Mat& origLabels, const vector<int>& sizes, float& err, bool labelsEquivalent = true, bool checkClusterUniq=true ) |
|
{ |
|
err = 0; |
|
CV_Assert( !labels.empty() && !origLabels.empty() ); |
|
CV_Assert( labels.rows == 1 || labels.cols == 1 ); |
|
CV_Assert( origLabels.rows == 1 || origLabels.cols == 1 ); |
|
CV_Assert( labels.total() == origLabels.total() ); |
|
CV_Assert( labels.type() == CV_32SC1 || labels.type() == CV_32FC1 ); |
|
CV_Assert( origLabels.type() == labels.type() ); |
|
|
|
vector<int> labelsMap; |
|
bool isFlt = labels.type() == CV_32FC1; |
|
if( !labelsEquivalent ) |
|
{ |
|
if( !getLabelsMap( labels, sizes, labelsMap, checkClusterUniq ) ) |
|
return false; |
|
|
|
for( int i = 0; i < labels.rows; i++ ) |
|
if( isFlt ) |
|
err += labels.at<float>(i) != labelsMap[(int)origLabels.at<float>(i)] ? 1.f : 0.f; |
|
else |
|
err += labels.at<int>(i) != labelsMap[origLabels.at<int>(i)] ? 1.f : 0.f; |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < labels.rows; i++ ) |
|
if( isFlt ) |
|
err += labels.at<float>(i) != origLabels.at<float>(i) ? 1.f : 0.f; |
|
else |
|
err += labels.at<int>(i) != origLabels.at<int>(i) ? 1.f : 0.f; |
|
} |
|
err /= (float)labels.rows; |
|
return true; |
|
} |
|
|
|
//-------------------------------------------------------------------------------------------- |
|
class CV_KMeansTest : public cvtest::BaseTest { |
|
public: |
|
CV_KMeansTest() {} |
|
protected: |
|
virtual void run( int start_from ); |
|
}; |
|
|
|
void CV_KMeansTest::run( int /*start_from*/ ) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
const int iters = 100; |
|
int sizesArr[] = { 5000, 7000, 8000 }; |
|
int pointsCount = sizesArr[0]+ sizesArr[1] + sizesArr[2]; |
|
|
|
Mat data( pointsCount, 2, CV_32FC1 ), labels; |
|
vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) ); |
|
Mat means; |
|
vector<Mat> covs; |
|
defaultDistribs( means, covs ); |
|
generateData( data, labels, sizes, means, covs, CV_32FC1, CV_32SC1 ); |
|
|
|
int code = cvtest::TS::OK; |
|
float err; |
|
Mat bestLabels; |
|
// 1. flag==KMEANS_PP_CENTERS |
|
kmeans( data, 3, bestLabels, TermCriteria( TermCriteria::COUNT, iters, 0.0), 0, KMEANS_PP_CENTERS, noArray() ); |
|
if( !calcErr( bestLabels, labels, sizes, err , false ) ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Bad output labels if flag==KMEANS_PP_CENTERS.\n" ); |
|
code = cvtest::TS::FAIL_INVALID_OUTPUT; |
|
} |
|
else if( err > 0.01f ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) if flag==KMEANS_PP_CENTERS.\n", err ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
} |
|
|
|
// 2. flag==KMEANS_RANDOM_CENTERS |
|
kmeans( data, 3, bestLabels, TermCriteria( TermCriteria::COUNT, iters, 0.0), 0, KMEANS_RANDOM_CENTERS, noArray() ); |
|
if( !calcErr( bestLabels, labels, sizes, err, false ) ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Bad output labels if flag==KMEANS_RANDOM_CENTERS.\n" ); |
|
code = cvtest::TS::FAIL_INVALID_OUTPUT; |
|
} |
|
else if( err > 0.01f ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) if flag==KMEANS_RANDOM_CENTERS.\n", err ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
} |
|
|
|
// 3. flag==KMEANS_USE_INITIAL_LABELS |
|
labels.copyTo( bestLabels ); |
|
RNG rng; |
|
for( int i = 0; i < 0.5f * pointsCount; i++ ) |
|
bestLabels.at<int>( rng.next() % pointsCount, 0 ) = rng.next() % 3; |
|
kmeans( data, 3, bestLabels, TermCriteria( TermCriteria::COUNT, iters, 0.0), 0, KMEANS_USE_INITIAL_LABELS, noArray() ); |
|
if( !calcErr( bestLabels, labels, sizes, err, false ) ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Bad output labels if flag==KMEANS_USE_INITIAL_LABELS.\n" ); |
|
code = cvtest::TS::FAIL_INVALID_OUTPUT; |
|
} |
|
else if( err > 0.01f ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) if flag==KMEANS_USE_INITIAL_LABELS.\n", err ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
} |
|
|
|
ts->set_failed_test_info( code ); |
|
} |
|
|
|
//-------------------------------------------------------------------------------------------- |
|
class CV_KNearestTest : public cvtest::BaseTest { |
|
public: |
|
CV_KNearestTest() {} |
|
protected: |
|
virtual void run( int start_from ); |
|
}; |
|
|
|
void CV_KNearestTest::run( int /*start_from*/ ) |
|
{ |
|
int sizesArr[] = { 500, 700, 800 }; |
|
int pointsCount = sizesArr[0]+ sizesArr[1] + sizesArr[2]; |
|
|
|
// train data |
|
Mat trainData( pointsCount, 2, CV_32FC1 ), trainLabels; |
|
vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) ); |
|
Mat means; |
|
vector<Mat> covs; |
|
defaultDistribs( means, covs ); |
|
generateData( trainData, trainLabels, sizes, means, covs, CV_32FC1, CV_32FC1 ); |
|
|
|
// test data |
|
Mat testData( pointsCount, 2, CV_32FC1 ), testLabels, bestLabels; |
|
generateData( testData, testLabels, sizes, means, covs, CV_32FC1, CV_32FC1 ); |
|
|
|
int code = cvtest::TS::OK; |
|
|
|
// KNearest default implementation |
|
Ptr<KNearest> knearest = KNearest::create(); |
|
knearest->train(trainData, ml::ROW_SAMPLE, trainLabels); |
|
knearest->findNearest(testData, 4, bestLabels); |
|
float err; |
|
if( !calcErr( bestLabels, testLabels, sizes, err, true ) ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Bad output labels.\n" ); |
|
code = cvtest::TS::FAIL_INVALID_OUTPUT; |
|
} |
|
else if( err > 0.01f ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) on test data.\n", err ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
} |
|
|
|
// KNearest KDTree implementation |
|
Ptr<KNearest> knearestKdt = KNearest::create(); |
|
knearestKdt->setAlgorithmType(KNearest::KDTREE); |
|
knearestKdt->train(trainData, ml::ROW_SAMPLE, trainLabels); |
|
knearestKdt->findNearest(testData, 4, bestLabels); |
|
if( !calcErr( bestLabels, testLabels, sizes, err, true ) ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Bad output labels.\n" ); |
|
code = cvtest::TS::FAIL_INVALID_OUTPUT; |
|
} |
|
else if( err > 0.01f ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) on test data.\n", err ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
} |
|
|
|
ts->set_failed_test_info( code ); |
|
} |
|
|
|
class EM_Params |
|
{ |
|
public: |
|
EM_Params(int _nclusters=10, int _covMatType=EM::COV_MAT_DIAGONAL, int _startStep=EM::START_AUTO_STEP, |
|
const cv::TermCriteria& _termCrit=cv::TermCriteria(cv::TermCriteria::COUNT+cv::TermCriteria::EPS, 100, FLT_EPSILON), |
|
const cv::Mat* _probs=0, const cv::Mat* _weights=0, |
|
const cv::Mat* _means=0, const std::vector<cv::Mat>* _covs=0) |
|
: nclusters(_nclusters), covMatType(_covMatType), startStep(_startStep), |
|
probs(_probs), weights(_weights), means(_means), covs(_covs), termCrit(_termCrit) |
|
{} |
|
|
|
int nclusters; |
|
int covMatType; |
|
int startStep; |
|
|
|
// all 4 following matrices should have type CV_32FC1 |
|
const cv::Mat* probs; |
|
const cv::Mat* weights; |
|
const cv::Mat* means; |
|
const std::vector<cv::Mat>* covs; |
|
|
|
cv::TermCriteria termCrit; |
|
}; |
|
|
|
//-------------------------------------------------------------------------------------------- |
|
class CV_EMTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_EMTest() {} |
|
protected: |
|
virtual void run( int start_from ); |
|
int runCase( int caseIndex, const EM_Params& params, |
|
const cv::Mat& trainData, const cv::Mat& trainLabels, |
|
const cv::Mat& testData, const cv::Mat& testLabels, |
|
const vector<int>& sizes); |
|
}; |
|
|
|
int CV_EMTest::runCase( int caseIndex, const EM_Params& params, |
|
const cv::Mat& trainData, const cv::Mat& trainLabels, |
|
const cv::Mat& testData, const cv::Mat& testLabels, |
|
const vector<int>& sizes ) |
|
{ |
|
int code = cvtest::TS::OK; |
|
|
|
cv::Mat labels; |
|
float err; |
|
|
|
Ptr<EM> em = EM::create(); |
|
em->setClustersNumber(params.nclusters); |
|
em->setCovarianceMatrixType(params.covMatType); |
|
em->setTermCriteria(params.termCrit); |
|
if( params.startStep == EM::START_AUTO_STEP ) |
|
em->trainEM( trainData, noArray(), labels, noArray() ); |
|
else if( params.startStep == EM::START_E_STEP ) |
|
em->trainE( trainData, *params.means, *params.covs, |
|
*params.weights, noArray(), labels, noArray() ); |
|
else if( params.startStep == EM::START_M_STEP ) |
|
em->trainM( trainData, *params.probs, |
|
noArray(), labels, noArray() ); |
|
|
|
// check train error |
|
if( !calcErr( labels, trainLabels, sizes, err , false, false ) ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Case index %i : Bad output labels.\n", caseIndex ); |
|
code = cvtest::TS::FAIL_INVALID_OUTPUT; |
|
} |
|
else if( err > 0.008f ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Case index %i : Bad accuracy (%f) on train data.\n", caseIndex, err ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
} |
|
|
|
// check test error |
|
labels.create( testData.rows, 1, CV_32SC1 ); |
|
for( int i = 0; i < testData.rows; i++ ) |
|
{ |
|
Mat sample = testData.row(i); |
|
Mat probs; |
|
labels.at<int>(i) = static_cast<int>(em->predict2( sample, probs )[1]); |
|
} |
|
if( !calcErr( labels, testLabels, sizes, err, false, false ) ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Case index %i : Bad output labels.\n", caseIndex ); |
|
code = cvtest::TS::FAIL_INVALID_OUTPUT; |
|
} |
|
else if( err > 0.008f ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Case index %i : Bad accuracy (%f) on test data.\n", caseIndex, err ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
} |
|
|
|
return code; |
|
} |
|
|
|
void CV_EMTest::run( int /*start_from*/ ) |
|
{ |
|
int sizesArr[] = { 500, 700, 800 }; |
|
int pointsCount = sizesArr[0]+ sizesArr[1] + sizesArr[2]; |
|
|
|
// Points distribution |
|
Mat means; |
|
vector<Mat> covs; |
|
defaultDistribs( means, covs, CV_64FC1 ); |
|
|
|
// train data |
|
Mat trainData( pointsCount, 2, CV_64FC1 ), trainLabels; |
|
vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) ); |
|
generateData( trainData, trainLabels, sizes, means, covs, CV_64FC1, CV_32SC1 ); |
|
|
|
// test data |
|
Mat testData( pointsCount, 2, CV_64FC1 ), testLabels; |
|
generateData( testData, testLabels, sizes, means, covs, CV_64FC1, CV_32SC1 ); |
|
|
|
EM_Params params; |
|
params.nclusters = 3; |
|
Mat probs(trainData.rows, params.nclusters, CV_64FC1, cv::Scalar(1)); |
|
params.probs = &probs; |
|
Mat weights(1, params.nclusters, CV_64FC1, cv::Scalar(1)); |
|
params.weights = &weights; |
|
params.means = &means; |
|
params.covs = &covs; |
|
|
|
int code = cvtest::TS::OK; |
|
int caseIndex = 0; |
|
{ |
|
params.startStep = EM::START_AUTO_STEP; |
|
params.covMatType = EM::COV_MAT_GENERIC; |
|
int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes); |
|
code = currCode == cvtest::TS::OK ? code : currCode; |
|
} |
|
{ |
|
params.startStep = EM::START_AUTO_STEP; |
|
params.covMatType = EM::COV_MAT_DIAGONAL; |
|
int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes); |
|
code = currCode == cvtest::TS::OK ? code : currCode; |
|
} |
|
{ |
|
params.startStep = EM::START_AUTO_STEP; |
|
params.covMatType = EM::COV_MAT_SPHERICAL; |
|
int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes); |
|
code = currCode == cvtest::TS::OK ? code : currCode; |
|
} |
|
{ |
|
params.startStep = EM::START_M_STEP; |
|
params.covMatType = EM::COV_MAT_GENERIC; |
|
int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes); |
|
code = currCode == cvtest::TS::OK ? code : currCode; |
|
} |
|
{ |
|
params.startStep = EM::START_M_STEP; |
|
params.covMatType = EM::COV_MAT_DIAGONAL; |
|
int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes); |
|
code = currCode == cvtest::TS::OK ? code : currCode; |
|
} |
|
{ |
|
params.startStep = EM::START_M_STEP; |
|
params.covMatType = EM::COV_MAT_SPHERICAL; |
|
int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes); |
|
code = currCode == cvtest::TS::OK ? code : currCode; |
|
} |
|
{ |
|
params.startStep = EM::START_E_STEP; |
|
params.covMatType = EM::COV_MAT_GENERIC; |
|
int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes); |
|
code = currCode == cvtest::TS::OK ? code : currCode; |
|
} |
|
{ |
|
params.startStep = EM::START_E_STEP; |
|
params.covMatType = EM::COV_MAT_DIAGONAL; |
|
int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes); |
|
code = currCode == cvtest::TS::OK ? code : currCode; |
|
} |
|
{ |
|
params.startStep = EM::START_E_STEP; |
|
params.covMatType = EM::COV_MAT_SPHERICAL; |
|
int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes); |
|
code = currCode == cvtest::TS::OK ? code : currCode; |
|
} |
|
|
|
ts->set_failed_test_info( code ); |
|
} |
|
|
|
class CV_EMTest_SaveLoad : public cvtest::BaseTest { |
|
public: |
|
CV_EMTest_SaveLoad() {} |
|
protected: |
|
virtual void run( int /*start_from*/ ) |
|
{ |
|
int code = cvtest::TS::OK; |
|
const int nclusters = 2; |
|
|
|
Mat samples = Mat(3,1,CV_64FC1); |
|
samples.at<double>(0,0) = 1; |
|
samples.at<double>(1,0) = 2; |
|
samples.at<double>(2,0) = 3; |
|
|
|
Mat labels; |
|
|
|
Ptr<EM> em = EM::create(); |
|
em->setClustersNumber(nclusters); |
|
em->trainEM(samples, noArray(), labels, noArray()); |
|
|
|
Mat firstResult(samples.rows, 1, CV_32SC1); |
|
for( int i = 0; i < samples.rows; i++) |
|
firstResult.at<int>(i) = static_cast<int>(em->predict2(samples.row(i), noArray())[1]); |
|
|
|
// Write out |
|
string filename = cv::tempfile(".xml"); |
|
{ |
|
FileStorage fs = FileStorage(filename, FileStorage::WRITE); |
|
try |
|
{ |
|
fs << "em" << "{"; |
|
em->write(fs); |
|
fs << "}"; |
|
} |
|
catch(...) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Crash in write method.\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_EXCEPTION ); |
|
} |
|
} |
|
|
|
em.release(); |
|
|
|
// Read in |
|
try |
|
{ |
|
em = Algorithm::load<EM>(filename); |
|
} |
|
catch(...) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Crash in read method.\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_EXCEPTION ); |
|
} |
|
|
|
remove( filename.c_str() ); |
|
|
|
int errCaseCount = 0; |
|
for( int i = 0; i < samples.rows; i++) |
|
errCaseCount = std::abs(em->predict2(samples.row(i), noArray())[1] - firstResult.at<int>(i)) < FLT_EPSILON ? 0 : 1; |
|
|
|
if( errCaseCount > 0 ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Different prediction results before writing and after reading (errCaseCount=%d).\n", errCaseCount ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
} |
|
|
|
ts->set_failed_test_info( code ); |
|
} |
|
}; |
|
|
|
class CV_EMTest_Classification : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_EMTest_Classification() {} |
|
protected: |
|
virtual void run(int) |
|
{ |
|
// This test classifies spam by the following way: |
|
// 1. estimates distributions of "spam" / "not spam" |
|
// 2. predict classID using Bayes classifier for estimated distributions. |
|
|
|
string dataFilename = string(ts->get_data_path()) + "spambase.data"; |
|
Ptr<TrainData> data = TrainData::loadFromCSV(dataFilename, 0); |
|
|
|
if( data.empty() ) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "File with spambase dataset can't be read.\n"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); |
|
return; |
|
} |
|
|
|
Mat samples = data->getSamples(); |
|
CV_Assert(samples.cols == 57); |
|
Mat responses = data->getResponses(); |
|
|
|
vector<int> trainSamplesMask(samples.rows, 0); |
|
int trainSamplesCount = (int)(0.5f * samples.rows); |
|
for(int i = 0; i < trainSamplesCount; i++) |
|
trainSamplesMask[i] = 1; |
|
RNG rng(0); |
|
for(size_t i = 0; i < trainSamplesMask.size(); i++) |
|
{ |
|
int i1 = rng(static_cast<unsigned>(trainSamplesMask.size())); |
|
int i2 = rng(static_cast<unsigned>(trainSamplesMask.size())); |
|
std::swap(trainSamplesMask[i1], trainSamplesMask[i2]); |
|
} |
|
|
|
Mat samples0, samples1; |
|
for(int i = 0; i < samples.rows; i++) |
|
{ |
|
if(trainSamplesMask[i]) |
|
{ |
|
Mat sample = samples.row(i); |
|
int resp = (int)responses.at<float>(i); |
|
if(resp == 0) |
|
samples0.push_back(sample); |
|
else |
|
samples1.push_back(sample); |
|
} |
|
} |
|
Ptr<EM> model0 = EM::create(); |
|
model0->setClustersNumber(3); |
|
model0->trainEM(samples0, noArray(), noArray(), noArray()); |
|
|
|
Ptr<EM> model1 = EM::create(); |
|
model1->setClustersNumber(3); |
|
model1->trainEM(samples1, noArray(), noArray(), noArray()); |
|
|
|
Mat trainConfusionMat(2, 2, CV_32SC1, Scalar(0)), |
|
testConfusionMat(2, 2, CV_32SC1, Scalar(0)); |
|
const double lambda = 1.; |
|
for(int i = 0; i < samples.rows; i++) |
|
{ |
|
Mat sample = samples.row(i); |
|
double sampleLogLikelihoods0 = model0->predict2(sample, noArray())[0]; |
|
double sampleLogLikelihoods1 = model1->predict2(sample, noArray())[0]; |
|
|
|
int classID = sampleLogLikelihoods0 >= lambda * sampleLogLikelihoods1 ? 0 : 1; |
|
|
|
if(trainSamplesMask[i]) |
|
trainConfusionMat.at<int>((int)responses.at<float>(i), classID)++; |
|
else |
|
testConfusionMat.at<int>((int)responses.at<float>(i), classID)++; |
|
} |
|
// std::cout << trainConfusionMat << std::endl; |
|
// std::cout << testConfusionMat << std::endl; |
|
|
|
double trainError = (double)(trainConfusionMat.at<int>(1,0) + trainConfusionMat.at<int>(0,1)) / trainSamplesCount; |
|
double testError = (double)(testConfusionMat.at<int>(1,0) + testConfusionMat.at<int>(0,1)) / (samples.rows - trainSamplesCount); |
|
const double maxTrainError = 0.23; |
|
const double maxTestError = 0.26; |
|
|
|
int code = cvtest::TS::OK; |
|
if(trainError > maxTrainError) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Too large train classification error (calc = %f, valid=%f).\n", trainError, maxTrainError); |
|
code = cvtest::TS::FAIL_INVALID_TEST_DATA; |
|
} |
|
if(testError > maxTestError) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Too large test classification error (calc = %f, valid=%f).\n", testError, maxTestError); |
|
code = cvtest::TS::FAIL_INVALID_TEST_DATA; |
|
} |
|
|
|
ts->set_failed_test_info(code); |
|
} |
|
}; |
|
|
|
TEST(ML_KMeans, accuracy) { CV_KMeansTest test; test.safe_run(); } |
|
TEST(ML_KNearest, accuracy) { CV_KNearestTest test; test.safe_run(); } |
|
TEST(ML_EM, accuracy) { CV_EMTest test; test.safe_run(); } |
|
TEST(ML_EM, save_load) { CV_EMTest_SaveLoad test; test.safe_run(); } |
|
TEST(ML_EM, classification) { CV_EMTest_Classification test; test.safe_run(); } |
|
|
|
TEST(ML_KNearest, regression_12347) |
|
{ |
|
Mat xTrainData = (Mat_<float>(5,2) << 1, 1.1, 1.1, 1, 2, 2, 2.1, 2, 2.1, 2.1); |
|
Mat yTrainLabels = (Mat_<float>(5,1) << 1, 1, 2, 2, 2); |
|
Ptr<KNearest> knn = KNearest::create(); |
|
knn->train(xTrainData, ml::ROW_SAMPLE, yTrainLabels); |
|
|
|
Mat xTestData = (Mat_<float>(2,2) << 1.1, 1.1, 2, 2.2); |
|
Mat zBestLabels, neighbours, dist; |
|
// check output shapes: |
|
int K = 16, Kexp = std::min(K, xTrainData.rows); |
|
knn->findNearest(xTestData, K, zBestLabels, neighbours, dist); |
|
EXPECT_EQ(xTestData.rows, zBestLabels.rows); |
|
EXPECT_EQ(neighbours.cols, Kexp); |
|
EXPECT_EQ(dist.cols, Kexp); |
|
// see if the result is still correct: |
|
K = 2; |
|
knn->findNearest(xTestData, K, zBestLabels, neighbours, dist); |
|
EXPECT_EQ(1, zBestLabels.at<float>(0,0)); |
|
EXPECT_EQ(2, zBestLabels.at<float>(1,0)); |
|
} |
|
|
|
}} // namespace
|
|
|