Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

408 lines
13 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#ifdef HAVE_CUDA
using namespace cvtest;
namespace {
//////////////////////////////////////////////////////////////////////////////
// GEMM
#ifdef HAVE_CUBLAS
CV_FLAGS(GemmFlags, 0, cv::GEMM_1_T, cv::GEMM_2_T, cv::GEMM_3_T);
#define ALL_GEMM_FLAGS testing::Values(GemmFlags(0), GemmFlags(cv::GEMM_1_T), GemmFlags(cv::GEMM_2_T), GemmFlags(cv::GEMM_3_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_3_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T | cv::GEMM_3_T))
PARAM_TEST_CASE(GEMM, cv::cuda::DeviceInfo, cv::Size, MatType, GemmFlags, UseRoi)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
int type;
int flags;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
type = GET_PARAM(2);
flags = GET_PARAM(3);
useRoi = GET_PARAM(4);
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(GEMM, Accuracy)
{
cv::Mat src1 = randomMat(size, type, -10.0, 10.0);
cv::Mat src2 = randomMat(size, type, -10.0, 10.0);
cv::Mat src3 = randomMat(size, type, -10.0, 10.0);
double alpha = randomDouble(-10.0, 10.0);
double beta = randomDouble(-10.0, 10.0);
if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
{
try
{
cv::cuda::GpuMat dst;
cv::cuda::gemm(loadMat(src1), loadMat(src2), alpha, loadMat(src3), beta, dst, flags);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
}
}
else if (type == CV_64FC2 && flags != 0)
{
try
{
cv::cuda::GpuMat dst;
cv::cuda::gemm(loadMat(src1), loadMat(src2), alpha, loadMat(src3), beta, dst, flags);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(cv::Error::StsNotImplemented, e.code);
}
}
else
{
cv::cuda::GpuMat dst = createMat(size, type, useRoi);
cv::cuda::gemm(loadMat(src1, useRoi), loadMat(src2, useRoi), alpha, loadMat(src3, useRoi), beta, dst, flags);
cv::Mat dst_gold;
cv::gemm(src1, src2, alpha, src3, beta, dst_gold, flags);
EXPECT_MAT_NEAR(dst_gold, dst, CV_MAT_DEPTH(type) == CV_32F ? 1e-1 : 1e-10);
}
}
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, GEMM, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_32FC1), MatType(CV_32FC2), MatType(CV_64FC1), MatType(CV_64FC2)),
ALL_GEMM_FLAGS,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////
// MulSpectrums
CV_FLAGS(DftFlags, 0, cv::DFT_INVERSE, cv::DFT_SCALE, cv::DFT_ROWS, cv::DFT_COMPLEX_OUTPUT, cv::DFT_REAL_OUTPUT)
PARAM_TEST_CASE(MulSpectrums, cv::cuda::DeviceInfo, cv::Size, DftFlags)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
int flag;
cv::Mat a, b;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
flag = GET_PARAM(2);
cv::cuda::setDevice(devInfo.deviceID());
a = randomMat(size, CV_32FC2);
b = randomMat(size, CV_32FC2);
}
};
CUDA_TEST_P(MulSpectrums, Simple)
{
cv::cuda::GpuMat c;
cv::cuda::mulSpectrums(loadMat(a), loadMat(b), c, flag, false);
cv::Mat c_gold;
cv::mulSpectrums(a, b, c_gold, flag, false);
EXPECT_MAT_NEAR(c_gold, c, 1e-2);
}
CUDA_TEST_P(MulSpectrums, Scaled)
{
float scale = 1.f / size.area();
cv::cuda::GpuMat c;
cv::cuda::mulAndScaleSpectrums(loadMat(a), loadMat(b), c, flag, scale, false);
cv::Mat c_gold;
cv::mulSpectrums(a, b, c_gold, flag, false);
c_gold.convertTo(c_gold, c_gold.type(), scale);
EXPECT_MAT_NEAR(c_gold, c, 1e-2);
}
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, MulSpectrums, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(DftFlags(0), DftFlags(cv::DFT_ROWS))));
////////////////////////////////////////////////////////////////////////////
// Dft
struct Dft : testing::TestWithParam<cv::cuda::DeviceInfo>
{
cv::cuda::DeviceInfo devInfo;
virtual void SetUp()
{
devInfo = GetParam();
cv::cuda::setDevice(devInfo.deviceID());
}
};
namespace
{
void testC2C(const std::string& hint, int cols, int rows, int flags, bool inplace)
{
SCOPED_TRACE(hint);
cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC2, 0.0, 10.0);
cv::Mat b_gold;
cv::dft(a, b_gold, flags);
cv::cuda::GpuMat d_b;
cv::cuda::GpuMat d_b_data;
if (inplace)
{
d_b_data.create(1, a.size().area(), CV_32FC2);
d_b = cv::cuda::GpuMat(a.rows, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
}
cv::cuda::dft(loadMat(a), d_b, cv::Size(cols, rows), flags);
EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
ASSERT_EQ(CV_32F, d_b.depth());
ASSERT_EQ(2, d_b.channels());
EXPECT_MAT_NEAR(b_gold, cv::Mat(d_b), rows * cols * 1e-4);
}
}
CUDA_TEST_P(Dft, C2C)
{
int cols = randomInt(2, 100);
int rows = randomInt(2, 100);
for (int i = 0; i < 2; ++i)
{
bool inplace = i != 0;
testC2C("no flags", cols, rows, 0, inplace);
testC2C("no flags 0 1", cols, rows + 1, 0, inplace);
testC2C("no flags 1 0", cols, rows + 1, 0, inplace);
testC2C("no flags 1 1", cols + 1, rows, 0, inplace);
testC2C("DFT_INVERSE", cols, rows, cv::DFT_INVERSE, inplace);
testC2C("DFT_ROWS", cols, rows, cv::DFT_ROWS, inplace);
testC2C("single col", 1, rows, 0, inplace);
testC2C("single row", cols, 1, 0, inplace);
testC2C("single col inversed", 1, rows, cv::DFT_INVERSE, inplace);
testC2C("single row inversed", cols, 1, cv::DFT_INVERSE, inplace);
testC2C("single row DFT_ROWS", cols, 1, cv::DFT_ROWS, inplace);
testC2C("size 1 2", 1, 2, 0, inplace);
testC2C("size 2 1", 2, 1, 0, inplace);
}
}
namespace
{
void testR2CThenC2R(const std::string& hint, int cols, int rows, bool inplace)
{
SCOPED_TRACE(hint);
cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC1, 0.0, 10.0);
cv::cuda::GpuMat d_b, d_c;
cv::cuda::GpuMat d_b_data, d_c_data;
if (inplace)
{
if (a.cols == 1)
{
d_b_data.create(1, (a.rows / 2 + 1) * a.cols, CV_32FC2);
d_b = cv::cuda::GpuMat(a.rows / 2 + 1, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
}
else
{
d_b_data.create(1, a.rows * (a.cols / 2 + 1), CV_32FC2);
d_b = cv::cuda::GpuMat(a.rows, a.cols / 2 + 1, CV_32FC2, d_b_data.ptr(), (a.cols / 2 + 1) * d_b_data.elemSize());
}
d_c_data.create(1, a.size().area(), CV_32F);
d_c = cv::cuda::GpuMat(a.rows, a.cols, CV_32F, d_c_data.ptr(), a.cols * d_c_data.elemSize());
}
cv::cuda::dft(loadMat(a), d_b, cv::Size(cols, rows), 0);
cv::cuda::dft(d_b, d_c, cv::Size(cols, rows), cv::DFT_REAL_OUTPUT | cv::DFT_SCALE);
EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
EXPECT_TRUE(!inplace || d_c.ptr() == d_c_data.ptr());
ASSERT_EQ(CV_32F, d_c.depth());
ASSERT_EQ(1, d_c.channels());
cv::Mat c(d_c);
EXPECT_MAT_NEAR(a, c, rows * cols * 1e-5);
}
}
CUDA_TEST_P(Dft, R2CThenC2R)
{
int cols = randomInt(2, 100);
int rows = randomInt(2, 100);
testR2CThenC2R("sanity", cols, rows, false);
testR2CThenC2R("sanity 0 1", cols, rows + 1, false);
testR2CThenC2R("sanity 1 0", cols + 1, rows, false);
testR2CThenC2R("sanity 1 1", cols + 1, rows + 1, false);
testR2CThenC2R("single col", 1, rows, false);
testR2CThenC2R("single col 1", 1, rows + 1, false);
testR2CThenC2R("single row", cols, 1, false);
testR2CThenC2R("single row 1", cols + 1, 1, false);
testR2CThenC2R("sanity", cols, rows, true);
testR2CThenC2R("sanity 0 1", cols, rows + 1, true);
testR2CThenC2R("sanity 1 0", cols + 1, rows, true);
testR2CThenC2R("sanity 1 1", cols + 1, rows + 1, true);
testR2CThenC2R("single row", cols, 1, true);
testR2CThenC2R("single row 1", cols + 1, 1, true);
}
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, Dft, ALL_DEVICES);
////////////////////////////////////////////////////////
// Convolve
namespace
{
void convolveDFT(const cv::Mat& A, const cv::Mat& B, cv::Mat& C, bool ccorr = false)
{
// reallocate the output array if needed
C.create(std::abs(A.rows - B.rows) + 1, std::abs(A.cols - B.cols) + 1, A.type());
cv::Size dftSize;
// compute the size of DFT transform
dftSize.width = cv::getOptimalDFTSize(A.cols + B.cols - 1);
dftSize.height = cv::getOptimalDFTSize(A.rows + B.rows - 1);
// allocate temporary buffers and initialize them with 0s
cv::Mat tempA(dftSize, A.type(), cv::Scalar::all(0));
cv::Mat tempB(dftSize, B.type(), cv::Scalar::all(0));
// copy A and B to the top-left corners of tempA and tempB, respectively
cv::Mat roiA(tempA, cv::Rect(0, 0, A.cols, A.rows));
A.copyTo(roiA);
cv::Mat roiB(tempB, cv::Rect(0, 0, B.cols, B.rows));
B.copyTo(roiB);
// now transform the padded A & B in-place;
// use "nonzeroRows" hint for faster processing
cv::dft(tempA, tempA, 0, A.rows);
cv::dft(tempB, tempB, 0, B.rows);
// multiply the spectrums;
// the function handles packed spectrum representations well
cv::mulSpectrums(tempA, tempB, tempA, 0, ccorr);
// transform the product back from the frequency domain.
// Even though all the result rows will be non-zero,
// you need only the first C.rows of them, and thus you
// pass nonzeroRows == C.rows
cv::dft(tempA, tempA, cv::DFT_INVERSE + cv::DFT_SCALE, C.rows);
// now copy the result back to C.
tempA(cv::Rect(0, 0, C.cols, C.rows)).copyTo(C);
}
IMPLEMENT_PARAM_CLASS(KSize, int)
IMPLEMENT_PARAM_CLASS(Ccorr, bool)
}
PARAM_TEST_CASE(Convolve, cv::cuda::DeviceInfo, cv::Size, KSize, Ccorr)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
int ksize;
bool ccorr;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
ksize = GET_PARAM(2);
ccorr = GET_PARAM(3);
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(Convolve, Accuracy)
{
cv::Mat src = randomMat(size, CV_32FC1, 0.0, 100.0);
cv::Mat kernel = randomMat(cv::Size(ksize, ksize), CV_32FC1, 0.0, 1.0);
cv::Ptr<cv::cuda::Convolution> conv = cv::cuda::createConvolution();
cv::cuda::GpuMat dst;
conv->convolve(loadMat(src), loadMat(kernel), dst, ccorr);
cv::Mat dst_gold;
convolveDFT(src, kernel, dst_gold, ccorr);
EXPECT_MAT_NEAR(dst, dst_gold, 1e-1);
}
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, Convolve, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(KSize(3), KSize(7), KSize(11), KSize(17), KSize(19), KSize(23), KSize(45)),
testing::Values(Ccorr(false), Ccorr(true))));
#endif // HAVE_CUBLAS
} // namespace
#endif // HAVE_CUDA