mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
471 lines
14 KiB
471 lines
14 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencv2/core/core_c.h" |
|
#include "calib3d_c_api.h" |
|
|
|
/************************************************************************************\ |
|
Some backward compatibility stuff, to be moved to legacy or compat module |
|
\************************************************************************************/ |
|
|
|
using cv::Ptr; |
|
|
|
////////////////// Levenberg-Marquardt engine (the old variant) //////////////////////// |
|
|
|
CvLevMarq::CvLevMarq() |
|
{ |
|
lambdaLg10 = 0; state = DONE; |
|
criteria = cvTermCriteria(0,0,0); |
|
iters = 0; |
|
completeSymmFlag = false; |
|
errNorm = prevErrNorm = DBL_MAX; |
|
solveMethod = cv::DECOMP_SVD; |
|
} |
|
|
|
CvLevMarq::CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria0, bool _completeSymmFlag ) |
|
{ |
|
init(nparams, nerrs, criteria0, _completeSymmFlag); |
|
} |
|
|
|
void CvLevMarq::clear() |
|
{ |
|
mask.release(); |
|
prevParam.release(); |
|
param.release(); |
|
J.release(); |
|
err.release(); |
|
JtJ.release(); |
|
JtJN.release(); |
|
JtErr.release(); |
|
JtJV.release(); |
|
JtJW.release(); |
|
} |
|
|
|
CvLevMarq::~CvLevMarq() |
|
{ |
|
clear(); |
|
} |
|
|
|
void CvLevMarq::init( int nparams, int nerrs, CvTermCriteria criteria0, bool _completeSymmFlag ) |
|
{ |
|
if( !param || param->rows != nparams || nerrs != (err ? err->rows : 0) ) |
|
clear(); |
|
mask.reset(cvCreateMat( nparams, 1, CV_8U )); |
|
cvSet(mask, cvScalarAll(1)); |
|
prevParam.reset(cvCreateMat( nparams, 1, CV_64F )); |
|
param.reset(cvCreateMat( nparams, 1, CV_64F )); |
|
JtJ.reset(cvCreateMat( nparams, nparams, CV_64F )); |
|
JtErr.reset(cvCreateMat( nparams, 1, CV_64F )); |
|
if( nerrs > 0 ) |
|
{ |
|
J.reset(cvCreateMat( nerrs, nparams, CV_64F )); |
|
err.reset(cvCreateMat( nerrs, 1, CV_64F )); |
|
} |
|
errNorm = prevErrNorm = DBL_MAX; |
|
lambdaLg10 = -3; |
|
criteria = criteria0; |
|
if( criteria.type & CV_TERMCRIT_ITER ) |
|
criteria.max_iter = MIN(MAX(criteria.max_iter,1),1000); |
|
else |
|
criteria.max_iter = 30; |
|
if( criteria.type & CV_TERMCRIT_EPS ) |
|
criteria.epsilon = MAX(criteria.epsilon, 0); |
|
else |
|
criteria.epsilon = DBL_EPSILON; |
|
state = STARTED; |
|
iters = 0; |
|
completeSymmFlag = _completeSymmFlag; |
|
solveMethod = cv::DECOMP_SVD; |
|
} |
|
|
|
bool CvLevMarq::update( const CvMat*& _param, CvMat*& matJ, CvMat*& _err ) |
|
{ |
|
matJ = _err = 0; |
|
|
|
assert( !err.empty() ); |
|
if( state == DONE ) |
|
{ |
|
_param = param; |
|
return false; |
|
} |
|
|
|
if( state == STARTED ) |
|
{ |
|
_param = param; |
|
cvZero( J ); |
|
cvZero( err ); |
|
matJ = J; |
|
_err = err; |
|
state = CALC_J; |
|
return true; |
|
} |
|
|
|
if( state == CALC_J ) |
|
{ |
|
cvMulTransposed( J, JtJ, 1 ); |
|
cvGEMM( J, err, 1, 0, 0, JtErr, CV_GEMM_A_T ); |
|
cvCopy( param, prevParam ); |
|
step(); |
|
if( iters == 0 ) |
|
prevErrNorm = cvNorm(err, 0, CV_L2); |
|
_param = param; |
|
cvZero( err ); |
|
_err = err; |
|
state = CHECK_ERR; |
|
return true; |
|
} |
|
|
|
assert( state == CHECK_ERR ); |
|
errNorm = cvNorm( err, 0, CV_L2 ); |
|
if( errNorm > prevErrNorm ) |
|
{ |
|
if( ++lambdaLg10 <= 16 ) |
|
{ |
|
step(); |
|
_param = param; |
|
cvZero( err ); |
|
_err = err; |
|
state = CHECK_ERR; |
|
return true; |
|
} |
|
} |
|
|
|
lambdaLg10 = MAX(lambdaLg10-1, -16); |
|
if( ++iters >= criteria.max_iter || |
|
cvNorm(param, prevParam, CV_RELATIVE_L2) < criteria.epsilon ) |
|
{ |
|
_param = param; |
|
state = DONE; |
|
return true; |
|
} |
|
|
|
prevErrNorm = errNorm; |
|
_param = param; |
|
cvZero(J); |
|
matJ = J; |
|
_err = err; |
|
state = CALC_J; |
|
return true; |
|
} |
|
|
|
|
|
bool CvLevMarq::updateAlt( const CvMat*& _param, CvMat*& _JtJ, CvMat*& _JtErr, double*& _errNorm ) |
|
{ |
|
CV_Assert( !err ); |
|
if( state == DONE ) |
|
{ |
|
_param = param; |
|
return false; |
|
} |
|
|
|
if( state == STARTED ) |
|
{ |
|
_param = param; |
|
cvZero( JtJ ); |
|
cvZero( JtErr ); |
|
errNorm = 0; |
|
_JtJ = JtJ; |
|
_JtErr = JtErr; |
|
_errNorm = &errNorm; |
|
state = CALC_J; |
|
return true; |
|
} |
|
|
|
if( state == CALC_J ) |
|
{ |
|
cvCopy( param, prevParam ); |
|
step(); |
|
_param = param; |
|
prevErrNorm = errNorm; |
|
errNorm = 0; |
|
_errNorm = &errNorm; |
|
state = CHECK_ERR; |
|
return true; |
|
} |
|
|
|
assert( state == CHECK_ERR ); |
|
if( errNorm > prevErrNorm ) |
|
{ |
|
if( ++lambdaLg10 <= 16 ) |
|
{ |
|
step(); |
|
_param = param; |
|
errNorm = 0; |
|
_errNorm = &errNorm; |
|
state = CHECK_ERR; |
|
return true; |
|
} |
|
} |
|
|
|
lambdaLg10 = MAX(lambdaLg10-1, -16); |
|
if( ++iters >= criteria.max_iter || |
|
cvNorm(param, prevParam, CV_RELATIVE_L2) < criteria.epsilon ) |
|
{ |
|
_param = param; |
|
_JtJ = JtJ; |
|
_JtErr = JtErr; |
|
state = DONE; |
|
return false; |
|
} |
|
|
|
prevErrNorm = errNorm; |
|
cvZero( JtJ ); |
|
cvZero( JtErr ); |
|
_param = param; |
|
_JtJ = JtJ; |
|
_JtErr = JtErr; |
|
state = CALC_J; |
|
return true; |
|
} |
|
|
|
namespace { |
|
static void subMatrix(const cv::Mat& src, cv::Mat& dst, const std::vector<uchar>& cols, |
|
const std::vector<uchar>& rows) { |
|
int nonzeros_cols = cv::countNonZero(cols); |
|
cv::Mat tmp(src.rows, nonzeros_cols, CV_64FC1); |
|
|
|
for (int i = 0, j = 0; i < (int)cols.size(); i++) |
|
{ |
|
if (cols[i]) |
|
{ |
|
src.col(i).copyTo(tmp.col(j++)); |
|
} |
|
} |
|
|
|
int nonzeros_rows = cv::countNonZero(rows); |
|
dst.create(nonzeros_rows, nonzeros_cols, CV_64FC1); |
|
for (int i = 0, j = 0; i < (int)rows.size(); i++) |
|
{ |
|
if (rows[i]) |
|
{ |
|
tmp.row(i).copyTo(dst.row(j++)); |
|
} |
|
} |
|
} |
|
|
|
} |
|
|
|
|
|
void CvLevMarq::step() |
|
{ |
|
using namespace cv; |
|
const double LOG10 = log(10.); |
|
double lambda = exp(lambdaLg10*LOG10); |
|
int nparams = param->rows; |
|
|
|
Mat _JtJ = cvarrToMat(JtJ); |
|
Mat _mask = cvarrToMat(mask); |
|
|
|
int nparams_nz = countNonZero(_mask); |
|
if(!JtJN || JtJN->rows != nparams_nz) { |
|
// prevent re-allocation in every step |
|
JtJN.reset(cvCreateMat( nparams_nz, nparams_nz, CV_64F )); |
|
JtJV.reset(cvCreateMat( nparams_nz, 1, CV_64F )); |
|
JtJW.reset(cvCreateMat( nparams_nz, 1, CV_64F )); |
|
} |
|
|
|
Mat _JtJN = cvarrToMat(JtJN); |
|
Mat _JtErr = cvarrToMat(JtJV); |
|
Mat_<double> nonzero_param = cvarrToMat(JtJW); |
|
|
|
subMatrix(cvarrToMat(JtErr), _JtErr, std::vector<uchar>(1, 1), _mask); |
|
subMatrix(_JtJ, _JtJN, _mask, _mask); |
|
|
|
if( !err ) |
|
completeSymm( _JtJN, completeSymmFlag ); |
|
|
|
_JtJN.diag() *= 1. + lambda; |
|
solve(_JtJN, _JtErr, nonzero_param, solveMethod); |
|
|
|
int j = 0; |
|
for( int i = 0; i < nparams; i++ ) |
|
param->data.db[i] = prevParam->data.db[i] - (mask->data.ptr[i] ? nonzero_param(j++) : 0); |
|
} |
|
|
|
CV_IMPL int cvRANSACUpdateNumIters( double p, double ep, int modelPoints, int maxIters ) |
|
{ |
|
return cv::RANSACUpdateNumIters(p, ep, modelPoints, maxIters); |
|
} |
|
|
|
|
|
CV_IMPL int cvFindHomography( const CvMat* _src, const CvMat* _dst, CvMat* __H, int method, |
|
double ransacReprojThreshold, CvMat* _mask, int maxIters, |
|
double confidence) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(_src), dst = cv::cvarrToMat(_dst); |
|
|
|
if( src.channels() == 1 && (src.rows == 2 || src.rows == 3) && src.cols > 3 ) |
|
cv::transpose(src, src); |
|
if( dst.channels() == 1 && (dst.rows == 2 || dst.rows == 3) && dst.cols > 3 ) |
|
cv::transpose(dst, dst); |
|
|
|
if ( maxIters < 0 ) |
|
maxIters = 0; |
|
if ( maxIters > 2000 ) |
|
maxIters = 2000; |
|
|
|
if ( confidence < 0 ) |
|
confidence = 0; |
|
if ( confidence > 1 ) |
|
confidence = 1; |
|
|
|
const cv::Mat H = cv::cvarrToMat(__H), mask = cv::cvarrToMat(_mask); |
|
cv::Mat H0 = cv::findHomography(src, dst, method, ransacReprojThreshold, |
|
_mask ? cv::_OutputArray(mask) : cv::_OutputArray(), maxIters, |
|
confidence); |
|
|
|
if( H0.empty() ) |
|
{ |
|
cv::Mat Hz = cv::cvarrToMat(__H); |
|
Hz.setTo(cv::Scalar::all(0)); |
|
return 0; |
|
} |
|
H0.convertTo(H, H.type()); |
|
return 1; |
|
} |
|
|
|
|
|
CV_IMPL int cvFindFundamentalMat( const CvMat* points1, const CvMat* points2, |
|
CvMat* fmatrix, int method, |
|
double param1, double param2, CvMat* _mask ) |
|
{ |
|
cv::Mat m1 = cv::cvarrToMat(points1), m2 = cv::cvarrToMat(points2); |
|
|
|
if( m1.channels() == 1 && (m1.rows == 2 || m1.rows == 3) && m1.cols > 3 ) |
|
cv::transpose(m1, m1); |
|
if( m2.channels() == 1 && (m2.rows == 2 || m2.rows == 3) && m2.cols > 3 ) |
|
cv::transpose(m2, m2); |
|
|
|
const cv::Mat FM = cv::cvarrToMat(fmatrix), mask = cv::cvarrToMat(_mask); |
|
cv::Mat FM0 = cv::findFundamentalMat(m1, m2, method, param1, param2, |
|
_mask ? cv::_OutputArray(mask) : cv::_OutputArray()); |
|
|
|
if( FM0.empty() ) |
|
{ |
|
cv::Mat FM0z = cv::cvarrToMat(fmatrix); |
|
FM0z.setTo(cv::Scalar::all(0)); |
|
return 0; |
|
} |
|
|
|
CV_Assert( FM0.cols == 3 && FM0.rows % 3 == 0 && FM.cols == 3 && FM.rows % 3 == 0 && FM.channels() == 1 ); |
|
cv::Mat FM1 = FM.rowRange(0, MIN(FM0.rows, FM.rows)); |
|
FM0.rowRange(0, FM1.rows).convertTo(FM1, FM1.type()); |
|
return FM1.rows / 3; |
|
} |
|
|
|
|
|
CV_IMPL void cvComputeCorrespondEpilines( const CvMat* points, int pointImageID, |
|
const CvMat* fmatrix, CvMat* _lines ) |
|
{ |
|
cv::Mat pt = cv::cvarrToMat(points), fm = cv::cvarrToMat(fmatrix); |
|
cv::Mat lines = cv::cvarrToMat(_lines); |
|
const cv::Mat lines0 = lines; |
|
|
|
if( pt.channels() == 1 && (pt.rows == 2 || pt.rows == 3) && pt.cols > 3 ) |
|
cv::transpose(pt, pt); |
|
|
|
cv::computeCorrespondEpilines(pt, pointImageID, fm, lines); |
|
|
|
bool tflag = lines0.channels() == 1 && lines0.rows == 3 && lines0.cols > 3; |
|
lines = lines.reshape(lines0.channels(), (tflag ? lines0.cols : lines0.rows)); |
|
|
|
if( tflag ) |
|
{ |
|
CV_Assert( lines.rows == lines0.cols && lines.cols == lines0.rows ); |
|
if( lines0.type() == lines.type() ) |
|
transpose( lines, lines0 ); |
|
else |
|
{ |
|
transpose( lines, lines ); |
|
lines.convertTo( lines0, lines0.type() ); |
|
} |
|
} |
|
else |
|
{ |
|
CV_Assert( lines.size() == lines0.size() ); |
|
if( lines.data != lines0.data ) |
|
lines.convertTo(lines0, lines0.type()); |
|
} |
|
} |
|
|
|
|
|
CV_IMPL void cvConvertPointsHomogeneous( const CvMat* _src, CvMat* _dst ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(_src), dst = cv::cvarrToMat(_dst); |
|
const cv::Mat dst0 = dst; |
|
|
|
int d0 = src.channels() > 1 ? src.channels() : MIN(src.cols, src.rows); |
|
|
|
if( src.channels() == 1 && src.cols > d0 ) |
|
cv::transpose(src, src); |
|
|
|
int d1 = dst.channels() > 1 ? dst.channels() : MIN(dst.cols, dst.rows); |
|
|
|
if( d0 == d1 ) |
|
src.copyTo(dst); |
|
else if( d0 < d1 ) |
|
cv::convertPointsToHomogeneous(src, dst); |
|
else |
|
cv::convertPointsFromHomogeneous(src, dst); |
|
|
|
bool tflag = dst0.channels() == 1 && dst0.cols > d1; |
|
dst = dst.reshape(dst0.channels(), (tflag ? dst0.cols : dst0.rows)); |
|
|
|
if( tflag ) |
|
{ |
|
CV_Assert( dst.rows == dst0.cols && dst.cols == dst0.rows ); |
|
if( dst0.type() == dst.type() ) |
|
transpose( dst, dst0 ); |
|
else |
|
{ |
|
transpose( dst, dst ); |
|
dst.convertTo( dst0, dst0.type() ); |
|
} |
|
} |
|
else |
|
{ |
|
CV_Assert( dst.size() == dst0.size() ); |
|
if( dst.data != dst0.data ) |
|
dst.convertTo(dst0, dst0.type()); |
|
} |
|
}
|
|
|