mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
175 lines
5.3 KiB
175 lines
5.3 KiB
/* |
|
Sample of using OpenCV dnn module with Torch ENet model. |
|
*/ |
|
|
|
#include <opencv2/dnn.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/highgui.hpp> |
|
using namespace cv; |
|
using namespace cv::dnn; |
|
|
|
#include <fstream> |
|
#include <iostream> |
|
#include <cstdlib> |
|
#include <sstream> |
|
using namespace std; |
|
|
|
const String keys = |
|
"{help h || Sample app for loading ENet Torch model. " |
|
"The model and class names list can be downloaded here: " |
|
"https://www.dropbox.com/sh/dywzk3gyb12hpe5/AAD5YkUa8XgMpHs2gCRgmCVCa }" |
|
"{model m || path to Torch .net model file (model_best.net) }" |
|
"{image i || path to image file }" |
|
"{result r || path to save output blob (optional, binary format, NCHW order) }" |
|
"{show s || whether to show all output channels or not}" |
|
"{o_blob || output blob's name. If empty, last blob's name in net is used}"; |
|
|
|
static const int kNumClasses = 20; |
|
|
|
static const String classes[] = { |
|
"Background", "Road", "Sidewalk", "Building", "Wall", "Fence", "Pole", |
|
"TrafficLight", "TrafficSign", "Vegetation", "Terrain", "Sky", "Person", |
|
"Rider", "Car", "Truck", "Bus", "Train", "Motorcycle", "Bicycle" |
|
}; |
|
|
|
static const Vec3b colors[] = { |
|
Vec3b(0, 0, 0), Vec3b(244, 126, 205), Vec3b(254, 83, 132), Vec3b(192, 200, 189), |
|
Vec3b(50, 56, 251), Vec3b(65, 199, 228), Vec3b(240, 178, 193), Vec3b(201, 67, 188), |
|
Vec3b(85, 32, 33), Vec3b(116, 25, 18), Vec3b(162, 33, 72), Vec3b(101, 150, 210), |
|
Vec3b(237, 19, 16), Vec3b(149, 197, 72), Vec3b(80, 182, 21), Vec3b(141, 5, 207), |
|
Vec3b(189, 156, 39), Vec3b(235, 170, 186), Vec3b(133, 109, 144), Vec3b(231, 160, 96) |
|
}; |
|
|
|
static void showLegend(); |
|
|
|
static void colorizeSegmentation(const Mat &score, Mat &segm); |
|
|
|
int main(int argc, char **argv) |
|
{ |
|
CommandLineParser parser(argc, argv, keys); |
|
|
|
if (parser.has("help") || argc == 1) |
|
{ |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
|
|
String modelFile = parser.get<String>("model"); |
|
String imageFile = parser.get<String>("image"); |
|
|
|
if (!parser.check()) |
|
{ |
|
parser.printErrors(); |
|
return 0; |
|
} |
|
|
|
String resultFile = parser.get<String>("result"); |
|
|
|
//! [Read model and initialize network] |
|
dnn::Net net = dnn::readNetFromTorch(modelFile); |
|
|
|
//! [Prepare blob] |
|
Mat img = imread(imageFile), input; |
|
if (img.empty()) |
|
{ |
|
std::cerr << "Can't read image from the file: " << imageFile << std::endl; |
|
exit(-1); |
|
} |
|
|
|
Mat inputBlob = blobFromImage(img, 1./255, Size(1024, 512), Scalar(), true, false); //Convert Mat to batch of images |
|
//! [Prepare blob] |
|
|
|
//! [Set input blob] |
|
net.setInput(inputBlob); //set the network input |
|
//! [Set input blob] |
|
|
|
TickMeter tm; |
|
|
|
String oBlob = net.getLayerNames().back(); |
|
if (!parser.get<String>("o_blob").empty()) |
|
{ |
|
oBlob = parser.get<String>("o_blob"); |
|
} |
|
|
|
//! [Make forward pass] |
|
tm.start(); |
|
Mat result = net.forward(oBlob); |
|
tm.stop(); |
|
|
|
if (!resultFile.empty()) { |
|
CV_Assert(result.isContinuous()); |
|
|
|
ofstream fout(resultFile.c_str(), ios::out | ios::binary); |
|
fout.write((char*)result.data, result.total() * sizeof(float)); |
|
fout.close(); |
|
} |
|
|
|
std::cout << "Output blob: " << result.size[0] << " x " << result.size[1] << " x " << result.size[2] << " x " << result.size[3] << "\n"; |
|
std::cout << "Inference time, ms: " << tm.getTimeMilli() << std::endl; |
|
|
|
if (parser.has("show")) |
|
{ |
|
Mat segm, show; |
|
colorizeSegmentation(result, segm); |
|
showLegend(); |
|
|
|
cv::resize(segm, segm, img.size(), 0, 0, cv::INTER_NEAREST); |
|
addWeighted(img, 0.1, segm, 0.9, 0.0, show); |
|
|
|
imshow("Result", show); |
|
waitKey(); |
|
} |
|
return 0; |
|
} //main |
|
|
|
static void showLegend() |
|
{ |
|
static const int kBlockHeight = 30; |
|
|
|
cv::Mat legend(kBlockHeight * kNumClasses, 200, CV_8UC3); |
|
for(int i = 0; i < kNumClasses; i++) |
|
{ |
|
cv::Mat block = legend.rowRange(i * kBlockHeight, (i + 1) * kBlockHeight); |
|
block.setTo(colors[i]); |
|
putText(block, classes[i], Point(0, kBlockHeight / 2), FONT_HERSHEY_SIMPLEX, 0.5, Vec3b(255, 255, 255)); |
|
} |
|
imshow("Legend", legend); |
|
} |
|
|
|
static void colorizeSegmentation(const Mat &score, Mat &segm) |
|
{ |
|
const int rows = score.size[2]; |
|
const int cols = score.size[3]; |
|
const int chns = score.size[1]; |
|
|
|
Mat maxCl = Mat::zeros(rows, cols, CV_8UC1); |
|
Mat maxVal(rows, cols, CV_32FC1, score.data); |
|
for (int ch = 1; ch < chns; ch++) |
|
{ |
|
for (int row = 0; row < rows; row++) |
|
{ |
|
const float *ptrScore = score.ptr<float>(0, ch, row); |
|
uint8_t *ptrMaxCl = maxCl.ptr<uint8_t>(row); |
|
float *ptrMaxVal = maxVal.ptr<float>(row); |
|
for (int col = 0; col < cols; col++) |
|
{ |
|
if (ptrScore[col] > ptrMaxVal[col]) |
|
{ |
|
ptrMaxVal[col] = ptrScore[col]; |
|
ptrMaxCl[col] = (uchar)ch; |
|
} |
|
} |
|
} |
|
} |
|
|
|
segm.create(rows, cols, CV_8UC3); |
|
for (int row = 0; row < rows; row++) |
|
{ |
|
const uchar *ptrMaxCl = maxCl.ptr<uchar>(row); |
|
Vec3b *ptrSegm = segm.ptr<Vec3b>(row); |
|
for (int col = 0; col < cols; col++) |
|
{ |
|
ptrSegm[col] = colors[ptrMaxCl[col]]; |
|
} |
|
} |
|
}
|
|
|