mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1924 lines
52 KiB
1924 lines
52 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "perf_precomp.hpp" |
|
|
|
using namespace std; |
|
using namespace testing; |
|
using namespace perf; |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Remap |
|
|
|
enum { HALF_SIZE=0, UPSIDE_DOWN, REFLECTION_X, REFLECTION_BOTH }; |
|
CV_ENUM(RemapMode, HALF_SIZE, UPSIDE_DOWN, REFLECTION_X, REFLECTION_BOTH) |
|
|
|
void generateMap(cv::Mat& map_x, cv::Mat& map_y, int remapMode) |
|
{ |
|
for (int j = 0; j < map_x.rows; ++j) |
|
{ |
|
for (int i = 0; i < map_x.cols; ++i) |
|
{ |
|
switch (remapMode) |
|
{ |
|
case HALF_SIZE: |
|
if (i > map_x.cols*0.25 && i < map_x.cols*0.75 && j > map_x.rows*0.25 && j < map_x.rows*0.75) |
|
{ |
|
map_x.at<float>(j,i) = 2.f * (i - map_x.cols * 0.25f) + 0.5f; |
|
map_y.at<float>(j,i) = 2.f * (j - map_x.rows * 0.25f) + 0.5f; |
|
} |
|
else |
|
{ |
|
map_x.at<float>(j,i) = 0.f; |
|
map_y.at<float>(j,i) = 0.f; |
|
} |
|
break; |
|
case UPSIDE_DOWN: |
|
map_x.at<float>(j,i) = static_cast<float>(i); |
|
map_y.at<float>(j,i) = static_cast<float>(map_x.rows - j); |
|
break; |
|
case REFLECTION_X: |
|
map_x.at<float>(j,i) = static_cast<float>(map_x.cols - i); |
|
map_y.at<float>(j,i) = static_cast<float>(j); |
|
break; |
|
case REFLECTION_BOTH: |
|
map_x.at<float>(j,i) = static_cast<float>(map_x.cols - i); |
|
map_y.at<float>(j,i) = static_cast<float>(map_x.rows - j); |
|
break; |
|
} // end of switch |
|
} |
|
} |
|
} |
|
|
|
DEF_PARAM_TEST(Sz_Depth_Cn_Inter_Border_Mode, cv::Size, MatDepth, MatCn, Interpolation, BorderMode, RemapMode); |
|
|
|
PERF_TEST_P(Sz_Depth_Cn_Inter_Border_Mode, ImgProc_Remap, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U, CV_32F), |
|
GPU_CHANNELS_1_3_4, |
|
Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)), |
|
ALL_BORDER_MODES, |
|
RemapMode::all())) |
|
{ |
|
declare.time(20.0); |
|
|
|
const cv::Size size = GET_PARAM(0); |
|
const int depth = GET_PARAM(1); |
|
const int channels = GET_PARAM(2); |
|
const int interpolation = GET_PARAM(3); |
|
const int borderMode = GET_PARAM(4); |
|
const int remapMode = GET_PARAM(5); |
|
|
|
const int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
cv::Mat src(size, type); |
|
declare.in(src, WARMUP_RNG); |
|
|
|
cv::Mat xmap(size, CV_32FC1); |
|
cv::Mat ymap(size, CV_32FC1); |
|
generateMap(xmap, ymap, remapMode); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(src); |
|
const cv::gpu::GpuMat d_xmap(xmap); |
|
const cv::gpu::GpuMat d_ymap(ymap); |
|
cv::gpu::GpuMat dst; |
|
|
|
TEST_CYCLE() cv::gpu::remap(d_src, dst, d_xmap, d_ymap, interpolation, borderMode); |
|
|
|
GPU_SANITY_CHECK(dst); |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() cv::remap(src, dst, xmap, ymap, interpolation, borderMode); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Resize |
|
|
|
DEF_PARAM_TEST(Sz_Depth_Cn_Inter_Scale, cv::Size, MatDepth, MatCn, Interpolation, double); |
|
|
|
PERF_TEST_P(Sz_Depth_Cn_Inter_Scale, ImgProc_Resize, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U, CV_32F), |
|
GPU_CHANNELS_1_3_4, |
|
Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)), |
|
Values(0.5, 0.3, 2.0))) |
|
{ |
|
declare.time(20.0); |
|
|
|
const cv::Size size = GET_PARAM(0); |
|
const int depth = GET_PARAM(1); |
|
const int channels = GET_PARAM(2); |
|
const int interpolation = GET_PARAM(3); |
|
const double f = GET_PARAM(4); |
|
|
|
const int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
cv::Mat src(size, type); |
|
declare.in(src, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat dst; |
|
|
|
TEST_CYCLE() cv::gpu::resize(d_src, dst, cv::Size(), f, f, interpolation); |
|
|
|
GPU_SANITY_CHECK(dst, 1e-3, ERROR_RELATIVE); |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() cv::resize(src, dst, cv::Size(), f, f, interpolation); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// ResizeArea |
|
|
|
DEF_PARAM_TEST(Sz_Depth_Cn_Scale, cv::Size, MatDepth, MatCn, double); |
|
|
|
PERF_TEST_P(Sz_Depth_Cn_Scale, ImgProc_ResizeArea, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U, CV_32F), |
|
GPU_CHANNELS_1_3_4, |
|
Values(0.2, 0.1, 0.05))) |
|
{ |
|
declare.time(1.0); |
|
|
|
const cv::Size size = GET_PARAM(0); |
|
const int depth = GET_PARAM(1); |
|
const int channels = GET_PARAM(2); |
|
const int interpolation = cv::INTER_AREA; |
|
const double f = GET_PARAM(3); |
|
|
|
const int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
cv::Mat src(size, type); |
|
declare.in(src, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat dst; |
|
|
|
TEST_CYCLE() cv::gpu::resize(d_src, dst, cv::Size(), f, f, interpolation); |
|
|
|
GPU_SANITY_CHECK(dst); |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() cv::resize(src, dst, cv::Size(), f, f, interpolation); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// WarpAffine |
|
|
|
DEF_PARAM_TEST(Sz_Depth_Cn_Inter_Border, cv::Size, MatDepth, MatCn, Interpolation, BorderMode); |
|
|
|
PERF_TEST_P(Sz_Depth_Cn_Inter_Border, ImgProc_WarpAffine, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U, CV_32F), |
|
GPU_CHANNELS_1_3_4, |
|
Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)), |
|
ALL_BORDER_MODES)) |
|
{ |
|
declare.time(20.0); |
|
|
|
const cv::Size size = GET_PARAM(0); |
|
const int depth = GET_PARAM(1); |
|
const int channels = GET_PARAM(2); |
|
const int interpolation = GET_PARAM(3); |
|
const int borderMode = GET_PARAM(4); |
|
|
|
const int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
cv::Mat src(size, type); |
|
declare.in(src, WARMUP_RNG); |
|
|
|
const double aplha = CV_PI / 4; |
|
const double mat[2 * 3] = |
|
{ |
|
std::cos(aplha), -std::sin(aplha), src.cols / 2, |
|
std::sin(aplha), std::cos(aplha), 0 |
|
}; |
|
const cv::Mat M(2, 3, CV_64F, (void*) mat); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat dst; |
|
|
|
TEST_CYCLE() cv::gpu::warpAffine(d_src, dst, M, size, interpolation, borderMode); |
|
|
|
GPU_SANITY_CHECK(dst, 1); |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() cv::warpAffine(src, dst, M, size, interpolation, borderMode); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// WarpPerspective |
|
|
|
PERF_TEST_P(Sz_Depth_Cn_Inter_Border, ImgProc_WarpPerspective, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U, CV_32F), |
|
GPU_CHANNELS_1_3_4, |
|
Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)), |
|
ALL_BORDER_MODES)) |
|
{ |
|
declare.time(20.0); |
|
|
|
const cv::Size size = GET_PARAM(0); |
|
const int depth = GET_PARAM(1); |
|
const int channels = GET_PARAM(2); |
|
const int interpolation = GET_PARAM(3); |
|
const int borderMode = GET_PARAM(4); |
|
|
|
const int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
cv::Mat src(size, type); |
|
declare.in(src, WARMUP_RNG); |
|
|
|
const double aplha = CV_PI / 4; |
|
double mat[3][3] = { {std::cos(aplha), -std::sin(aplha), src.cols / 2}, |
|
{std::sin(aplha), std::cos(aplha), 0}, |
|
{0.0, 0.0, 1.0}}; |
|
const cv::Mat M(3, 3, CV_64F, (void*) mat); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat dst; |
|
|
|
TEST_CYCLE() cv::gpu::warpPerspective(d_src, dst, M, size, interpolation, borderMode); |
|
|
|
GPU_SANITY_CHECK(dst, 1); |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() cv::warpPerspective(src, dst, M, size, interpolation, borderMode); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// CopyMakeBorder |
|
|
|
DEF_PARAM_TEST(Sz_Depth_Cn_Border, cv::Size, MatDepth, MatCn, BorderMode); |
|
|
|
PERF_TEST_P(Sz_Depth_Cn_Border, ImgProc_CopyMakeBorder, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U, CV_32F), |
|
GPU_CHANNELS_1_3_4, |
|
ALL_BORDER_MODES)) |
|
{ |
|
const cv::Size size = GET_PARAM(0); |
|
const int depth = GET_PARAM(1); |
|
const int channels = GET_PARAM(2); |
|
const int borderMode = GET_PARAM(3); |
|
|
|
const int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
cv::Mat src(size, type); |
|
declare.in(src, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat dst; |
|
|
|
TEST_CYCLE() cv::gpu::copyMakeBorder(d_src, dst, 5, 5, 5, 5, borderMode); |
|
|
|
GPU_SANITY_CHECK(dst); |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() cv::copyMakeBorder(src, dst, 5, 5, 5, 5, borderMode); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Threshold |
|
|
|
CV_ENUM(ThreshOp, THRESH_BINARY, THRESH_BINARY_INV, THRESH_TRUNC, THRESH_TOZERO, THRESH_TOZERO_INV) |
|
|
|
DEF_PARAM_TEST(Sz_Depth_Op, cv::Size, MatDepth, ThreshOp); |
|
|
|
PERF_TEST_P(Sz_Depth_Op, ImgProc_Threshold, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U, CV_32F, CV_64F), |
|
ThreshOp::all())) |
|
{ |
|
const cv::Size size = GET_PARAM(0); |
|
const int depth = GET_PARAM(1); |
|
const int threshOp = GET_PARAM(2); |
|
|
|
cv::Mat src(size, depth); |
|
declare.in(src, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat dst; |
|
|
|
TEST_CYCLE() cv::gpu::threshold(d_src, dst, 100.0, 255.0, threshOp); |
|
|
|
GPU_SANITY_CHECK(dst, 1e-10); |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() cv::threshold(src, dst, 100.0, 255.0, threshOp); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Integral |
|
|
|
PERF_TEST_P(Sz, ImgProc_Integral, |
|
GPU_TYPICAL_MAT_SIZES) |
|
{ |
|
const cv::Size size = GetParam(); |
|
|
|
cv::Mat src(size, CV_8UC1); |
|
declare.in(src, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat dst; |
|
cv::gpu::GpuMat d_buf; |
|
|
|
TEST_CYCLE() cv::gpu::integralBuffered(d_src, dst, d_buf); |
|
|
|
GPU_SANITY_CHECK(dst); |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() cv::integral(src, dst); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// IntegralSqr |
|
|
|
PERF_TEST_P(Sz, ImgProc_IntegralSqr, |
|
GPU_TYPICAL_MAT_SIZES) |
|
{ |
|
const cv::Size size = GetParam(); |
|
|
|
cv::Mat src(size, CV_8UC1); |
|
declare.in(src, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat dst; |
|
|
|
TEST_CYCLE() cv::gpu::sqrIntegral(d_src, dst); |
|
|
|
GPU_SANITY_CHECK(dst); |
|
} |
|
else |
|
{ |
|
FAIL_NO_CPU(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// HistEvenC1 |
|
|
|
PERF_TEST_P(Sz_Depth, ImgProc_HistEvenC1, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U, CV_16S))) |
|
{ |
|
const cv::Size size = GET_PARAM(0); |
|
const int depth = GET_PARAM(1); |
|
|
|
cv::Mat src(size, depth); |
|
declare.in(src, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat dst; |
|
cv::gpu::GpuMat d_buf; |
|
|
|
TEST_CYCLE() cv::gpu::histEven(d_src, dst, d_buf, 30, 0, 180); |
|
|
|
GPU_SANITY_CHECK(dst); |
|
} |
|
else |
|
{ |
|
const int hbins = 30; |
|
const float hranges[] = {0.0f, 180.0f}; |
|
const int histSize[] = {hbins}; |
|
const float* ranges[] = {hranges}; |
|
const int channels[] = {0}; |
|
|
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() cv::calcHist(&src, 1, channels, cv::Mat(), dst, 1, histSize, ranges); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// HistEvenC4 |
|
|
|
PERF_TEST_P(Sz_Depth, ImgProc_HistEvenC4, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U, CV_16S))) |
|
{ |
|
const cv::Size size = GET_PARAM(0); |
|
const int depth = GET_PARAM(1); |
|
|
|
cv::Mat src(size, CV_MAKE_TYPE(depth, 4)); |
|
declare.in(src, WARMUP_RNG); |
|
|
|
int histSize[] = {30, 30, 30, 30}; |
|
int lowerLevel[] = {0, 0, 0, 0}; |
|
int upperLevel[] = {180, 180, 180, 180}; |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat d_hist[4]; |
|
cv::gpu::GpuMat d_buf; |
|
|
|
TEST_CYCLE() cv::gpu::histEven(d_src, d_hist, d_buf, histSize, lowerLevel, upperLevel); |
|
|
|
cv::Mat cpu_hist0, cpu_hist1, cpu_hist2, cpu_hist3; |
|
d_hist[0].download(cpu_hist0); |
|
d_hist[1].download(cpu_hist1); |
|
d_hist[2].download(cpu_hist2); |
|
d_hist[3].download(cpu_hist3); |
|
SANITY_CHECK(cpu_hist0); |
|
SANITY_CHECK(cpu_hist1); |
|
SANITY_CHECK(cpu_hist2); |
|
SANITY_CHECK(cpu_hist3); |
|
} |
|
else |
|
{ |
|
FAIL_NO_CPU(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// CalcHist |
|
|
|
PERF_TEST_P(Sz, ImgProc_CalcHist, |
|
GPU_TYPICAL_MAT_SIZES) |
|
{ |
|
const cv::Size size = GetParam(); |
|
|
|
cv::Mat src(size, CV_8UC1); |
|
declare.in(src, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat dst; |
|
|
|
TEST_CYCLE() cv::gpu::calcHist(d_src, dst); |
|
|
|
GPU_SANITY_CHECK(dst); |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
const int hbins = 256; |
|
const float hranges[] = {0.0f, 256.0f}; |
|
const int histSize[] = {hbins}; |
|
const float* ranges[] = {hranges}; |
|
const int channels[] = {0}; |
|
|
|
TEST_CYCLE() cv::calcHist(&src, 1, channels, cv::Mat(), dst, 1, histSize, ranges); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// EqualizeHist |
|
|
|
PERF_TEST_P(Sz, ImgProc_EqualizeHist, |
|
GPU_TYPICAL_MAT_SIZES) |
|
{ |
|
const cv::Size size = GetParam(); |
|
|
|
cv::Mat src(size, CV_8UC1); |
|
declare.in(src, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat dst; |
|
cv::gpu::GpuMat d_hist; |
|
cv::gpu::GpuMat d_buf; |
|
|
|
TEST_CYCLE() cv::gpu::equalizeHist(d_src, dst, d_hist, d_buf); |
|
|
|
GPU_SANITY_CHECK(dst); |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() cv::equalizeHist(src, dst); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
|
|
DEF_PARAM_TEST(Sz_ClipLimit, cv::Size, double); |
|
|
|
PERF_TEST_P(Sz_ClipLimit, ImgProc_CLAHE, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
Values(0.0, 40.0))) |
|
{ |
|
const cv::Size size = GET_PARAM(0); |
|
const double clipLimit = GET_PARAM(1); |
|
|
|
cv::Mat src(size, CV_8UC1); |
|
declare.in(src, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::Ptr<cv::gpu::CLAHE> clahe = cv::gpu::createCLAHE(clipLimit); |
|
cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat dst; |
|
|
|
TEST_CYCLE() clahe->apply(d_src, dst); |
|
|
|
GPU_SANITY_CHECK(dst); |
|
} |
|
else |
|
{ |
|
cv::Ptr<cv::CLAHE> clahe = cv::createCLAHE(clipLimit); |
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() clahe->apply(src, dst); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// ColumnSum |
|
|
|
PERF_TEST_P(Sz, ImgProc_ColumnSum, |
|
GPU_TYPICAL_MAT_SIZES) |
|
{ |
|
const cv::Size size = GetParam(); |
|
|
|
cv::Mat src(size, CV_32FC1); |
|
declare.in(src, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat dst; |
|
|
|
TEST_CYCLE() cv::gpu::columnSum(d_src, dst); |
|
|
|
GPU_SANITY_CHECK(dst); |
|
} |
|
else |
|
{ |
|
FAIL_NO_CPU(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Canny |
|
|
|
DEF_PARAM_TEST(Image_AppertureSz_L2gradient, string, int, bool); |
|
|
|
PERF_TEST_P(Image_AppertureSz_L2gradient, ImgProc_Canny, |
|
Combine(Values("perf/800x600.png", "perf/1280x1024.png", "perf/1680x1050.png"), |
|
Values(3, 5), |
|
Bool())) |
|
{ |
|
const string fileName = GET_PARAM(0); |
|
const int apperture_size = GET_PARAM(1); |
|
const bool useL2gradient = GET_PARAM(2); |
|
|
|
const cv::Mat image = readImage(fileName, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(image.empty()); |
|
|
|
const double low_thresh = 50.0; |
|
const double high_thresh = 100.0; |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_image(image); |
|
cv::gpu::GpuMat dst; |
|
cv::gpu::CannyBuf d_buf; |
|
|
|
TEST_CYCLE() cv::gpu::Canny(d_image, d_buf, dst, low_thresh, high_thresh, apperture_size, useL2gradient); |
|
|
|
GPU_SANITY_CHECK(dst); |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() cv::Canny(image, dst, low_thresh, high_thresh, apperture_size, useL2gradient); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// MeanShiftFiltering |
|
|
|
DEF_PARAM_TEST_1(Image, string); |
|
|
|
PERF_TEST_P(Image, ImgProc_MeanShiftFiltering, |
|
Values<string>("gpu/meanshift/cones.png")) |
|
{ |
|
declare.time(300.0); |
|
|
|
const cv::Mat img = readImage(GetParam()); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
cv::Mat rgba; |
|
cv::cvtColor(img, rgba, cv::COLOR_BGR2BGRA); |
|
|
|
const int sp = 50; |
|
const int sr = 50; |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(rgba); |
|
cv::gpu::GpuMat dst; |
|
|
|
TEST_CYCLE() cv::gpu::meanShiftFiltering(d_src, dst, sp, sr); |
|
|
|
GPU_SANITY_CHECK(dst); |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() cv::pyrMeanShiftFiltering(img, dst, sp, sr); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// MeanShiftProc |
|
|
|
PERF_TEST_P(Image, ImgProc_MeanShiftProc, |
|
Values<string>("gpu/meanshift/cones.png")) |
|
{ |
|
declare.time(300.0); |
|
|
|
const cv::Mat img = readImage(GetParam()); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
cv::Mat rgba; |
|
cv::cvtColor(img, rgba, cv::COLOR_BGR2BGRA); |
|
|
|
const int sp = 50; |
|
const int sr = 50; |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(rgba); |
|
cv::gpu::GpuMat dstr; |
|
cv::gpu::GpuMat dstsp; |
|
|
|
TEST_CYCLE() cv::gpu::meanShiftProc(d_src, dstr, dstsp, sp, sr); |
|
|
|
GPU_SANITY_CHECK(dstr); |
|
GPU_SANITY_CHECK(dstsp); |
|
} |
|
else |
|
{ |
|
FAIL_NO_CPU(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// MeanShiftSegmentation |
|
|
|
PERF_TEST_P(Image, ImgProc_MeanShiftSegmentation, |
|
Values<string>("gpu/meanshift/cones.png")) |
|
{ |
|
declare.time(300.0); |
|
|
|
const cv::Mat img = readImage(GetParam()); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
cv::Mat rgba; |
|
cv::cvtColor(img, rgba, cv::COLOR_BGR2BGRA); |
|
|
|
const int sp = 10; |
|
const int sr = 10; |
|
const int minsize = 20; |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(rgba); |
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() cv::gpu::meanShiftSegmentation(d_src, dst, sp, sr, minsize); |
|
|
|
GPU_SANITY_CHECK(dst); |
|
} |
|
else |
|
{ |
|
FAIL_NO_CPU(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// BlendLinear |
|
|
|
PERF_TEST_P(Sz_Depth_Cn, ImgProc_BlendLinear, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_32F), |
|
GPU_CHANNELS_1_3_4)) |
|
{ |
|
const cv::Size size = GET_PARAM(0); |
|
const int depth = GET_PARAM(1); |
|
const int channels = GET_PARAM(2); |
|
|
|
const int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
cv::Mat img1(size, type); |
|
cv::Mat img2(size, type); |
|
declare.in(img1, img2, WARMUP_RNG); |
|
|
|
const cv::Mat weights1(size, CV_32FC1, cv::Scalar::all(0.5)); |
|
const cv::Mat weights2(size, CV_32FC1, cv::Scalar::all(0.5)); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_img1(img1); |
|
const cv::gpu::GpuMat d_img2(img2); |
|
const cv::gpu::GpuMat d_weights1(weights1); |
|
const cv::gpu::GpuMat d_weights2(weights2); |
|
cv::gpu::GpuMat dst; |
|
|
|
TEST_CYCLE() cv::gpu::blendLinear(d_img1, d_img2, d_weights1, d_weights2, dst); |
|
|
|
GPU_SANITY_CHECK(dst); |
|
} |
|
else |
|
{ |
|
FAIL_NO_CPU(); |
|
} |
|
} |
|
|
|
#ifdef HAVE_CUFFT |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Convolve |
|
|
|
DEF_PARAM_TEST(Sz_KernelSz_Ccorr, cv::Size, int, bool); |
|
|
|
PERF_TEST_P(Sz_KernelSz_Ccorr, ImgProc_Convolve, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
Values(17, 27, 32, 64), |
|
Bool())) |
|
{ |
|
declare.time(10.0); |
|
|
|
const cv::Size size = GET_PARAM(0); |
|
const int templ_size = GET_PARAM(1); |
|
const bool ccorr = GET_PARAM(2); |
|
|
|
const cv::Mat image(size, CV_32FC1); |
|
const cv::Mat templ(templ_size, templ_size, CV_32FC1); |
|
declare.in(image, templ, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::GpuMat d_image = cv::gpu::createContinuous(size, CV_32FC1); |
|
d_image.upload(image); |
|
|
|
cv::gpu::GpuMat d_templ = cv::gpu::createContinuous(templ_size, templ_size, CV_32FC1); |
|
d_templ.upload(templ); |
|
|
|
cv::gpu::GpuMat dst; |
|
cv::gpu::ConvolveBuf d_buf; |
|
|
|
TEST_CYCLE() cv::gpu::convolve(d_image, d_templ, dst, ccorr, d_buf); |
|
|
|
GPU_SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE); |
|
} |
|
else |
|
{ |
|
if (ccorr) |
|
FAIL_NO_CPU(); |
|
|
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() cv::filter2D(image, dst, image.depth(), templ); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// MatchTemplate8U |
|
|
|
CV_ENUM(TemplateMethod, TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED) |
|
|
|
DEF_PARAM_TEST(Sz_TemplateSz_Cn_Method, cv::Size, cv::Size, MatCn, TemplateMethod); |
|
|
|
PERF_TEST_P(Sz_TemplateSz_Cn_Method, ImgProc_MatchTemplate8U, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
Values(cv::Size(5, 5), cv::Size(16, 16), cv::Size(30, 30)), |
|
GPU_CHANNELS_1_3_4, |
|
TemplateMethod::all())) |
|
{ |
|
declare.time(300.0); |
|
|
|
const cv::Size size = GET_PARAM(0); |
|
const cv::Size templ_size = GET_PARAM(1); |
|
const int cn = GET_PARAM(2); |
|
const int method = GET_PARAM(3); |
|
|
|
cv::Mat image(size, CV_MAKE_TYPE(CV_8U, cn)); |
|
cv::Mat templ(templ_size, CV_MAKE_TYPE(CV_8U, cn)); |
|
declare.in(image, templ, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_image(image); |
|
const cv::gpu::GpuMat d_templ(templ); |
|
cv::gpu::GpuMat dst; |
|
|
|
TEST_CYCLE() cv::gpu::matchTemplate(d_image, d_templ, dst, method); |
|
|
|
GPU_SANITY_CHECK(dst, 1e-5, ERROR_RELATIVE); |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() cv::matchTemplate(image, templ, dst, method); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// MatchTemplate32F |
|
|
|
PERF_TEST_P(Sz_TemplateSz_Cn_Method, ImgProc_MatchTemplate32F, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
Values(cv::Size(5, 5), cv::Size(16, 16), cv::Size(30, 30)), |
|
GPU_CHANNELS_1_3_4, |
|
Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR)))) |
|
{ |
|
declare.time(300.0); |
|
|
|
const cv::Size size = GET_PARAM(0); |
|
const cv::Size templ_size = GET_PARAM(1); |
|
const int cn = GET_PARAM(2); |
|
int method = GET_PARAM(3); |
|
|
|
cv::Mat image(size, CV_MAKE_TYPE(CV_32F, cn)); |
|
cv::Mat templ(templ_size, CV_MAKE_TYPE(CV_32F, cn)); |
|
declare.in(image, templ, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_image(image); |
|
const cv::gpu::GpuMat d_templ(templ); |
|
cv::gpu::GpuMat dst; |
|
|
|
TEST_CYCLE() cv::gpu::matchTemplate(d_image, d_templ, dst, method); |
|
|
|
GPU_SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE); |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() cv::matchTemplate(image, templ, dst, method); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// MulSpectrums |
|
|
|
CV_FLAGS(DftFlags, 0, DFT_INVERSE, DFT_SCALE, DFT_ROWS, DFT_COMPLEX_OUTPUT, DFT_REAL_OUTPUT) |
|
|
|
DEF_PARAM_TEST(Sz_Flags, cv::Size, DftFlags); |
|
|
|
PERF_TEST_P(Sz_Flags, ImgProc_MulSpectrums, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
Values(0, DftFlags(cv::DFT_ROWS)))) |
|
{ |
|
const cv::Size size = GET_PARAM(0); |
|
const int flag = GET_PARAM(1); |
|
|
|
cv::Mat a(size, CV_32FC2); |
|
cv::Mat b(size, CV_32FC2); |
|
declare.in(a, b, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_a(a); |
|
const cv::gpu::GpuMat d_b(b); |
|
cv::gpu::GpuMat dst; |
|
|
|
TEST_CYCLE() cv::gpu::mulSpectrums(d_a, d_b, dst, flag); |
|
|
|
GPU_SANITY_CHECK(dst); |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() cv::mulSpectrums(a, b, dst, flag); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// MulAndScaleSpectrums |
|
|
|
PERF_TEST_P(Sz, ImgProc_MulAndScaleSpectrums, |
|
GPU_TYPICAL_MAT_SIZES) |
|
{ |
|
const cv::Size size = GetParam(); |
|
|
|
const float scale = 1.f / size.area(); |
|
|
|
cv::Mat src1(size, CV_32FC2); |
|
cv::Mat src2(size, CV_32FC2); |
|
declare.in(src1,src2, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src1(src1); |
|
const cv::gpu::GpuMat d_src2(src2); |
|
cv::gpu::GpuMat dst; |
|
|
|
TEST_CYCLE() cv::gpu::mulAndScaleSpectrums(d_src1, d_src2, dst, cv::DFT_ROWS, scale, false); |
|
|
|
GPU_SANITY_CHECK(dst); |
|
} |
|
else |
|
{ |
|
FAIL_NO_CPU(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Dft |
|
|
|
PERF_TEST_P(Sz_Flags, ImgProc_Dft, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
Values(0, DftFlags(cv::DFT_ROWS), DftFlags(cv::DFT_INVERSE)))) |
|
{ |
|
declare.time(10.0); |
|
|
|
const cv::Size size = GET_PARAM(0); |
|
const int flag = GET_PARAM(1); |
|
|
|
cv::Mat src(size, CV_32FC2); |
|
declare.in(src, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat dst; |
|
|
|
TEST_CYCLE() cv::gpu::dft(d_src, dst, size, flag); |
|
|
|
GPU_SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE); |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() cv::dft(src, dst, flag); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
|
|
#endif |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// CornerHarris |
|
|
|
DEF_PARAM_TEST(Image_Type_Border_BlockSz_ApertureSz, string, MatType, BorderMode, int, int); |
|
|
|
PERF_TEST_P(Image_Type_Border_BlockSz_ApertureSz, ImgProc_CornerHarris, |
|
Combine(Values<string>("gpu/stereobm/aloe-L.png"), |
|
Values(CV_8UC1, CV_32FC1), |
|
Values(BorderMode(cv::BORDER_REFLECT101), BorderMode(cv::BORDER_REPLICATE), BorderMode(cv::BORDER_REFLECT)), |
|
Values(3, 5, 7), |
|
Values(0, 3, 5, 7))) |
|
{ |
|
const string fileName = GET_PARAM(0); |
|
const int type = GET_PARAM(1); |
|
const int borderMode = GET_PARAM(2); |
|
const int blockSize = GET_PARAM(3); |
|
const int apertureSize = GET_PARAM(4); |
|
|
|
cv::Mat img = readImage(fileName, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
img.convertTo(img, type, type == CV_32F ? 1.0 / 255.0 : 1.0); |
|
|
|
const double k = 0.5; |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_img(img); |
|
cv::gpu::GpuMat dst; |
|
cv::gpu::GpuMat d_Dx; |
|
cv::gpu::GpuMat d_Dy; |
|
cv::gpu::GpuMat d_buf; |
|
|
|
TEST_CYCLE() cv::gpu::cornerHarris(d_img, dst, d_Dx, d_Dy, d_buf, blockSize, apertureSize, k, borderMode); |
|
|
|
GPU_SANITY_CHECK(dst, 1e-4); |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() cv::cornerHarris(img, dst, blockSize, apertureSize, k, borderMode); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// CornerMinEigenVal |
|
|
|
PERF_TEST_P(Image_Type_Border_BlockSz_ApertureSz, ImgProc_CornerMinEigenVal, |
|
Combine(Values<string>("gpu/stereobm/aloe-L.png"), |
|
Values(CV_8UC1, CV_32FC1), |
|
Values(BorderMode(cv::BORDER_REFLECT101), BorderMode(cv::BORDER_REPLICATE), BorderMode(cv::BORDER_REFLECT)), |
|
Values(3, 5, 7), |
|
Values(0, 3, 5, 7))) |
|
{ |
|
const string fileName = GET_PARAM(0); |
|
const int type = GET_PARAM(1); |
|
const int borderMode = GET_PARAM(2); |
|
const int blockSize = GET_PARAM(3); |
|
const int apertureSize = GET_PARAM(4); |
|
|
|
cv::Mat img = readImage(fileName, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
img.convertTo(img, type, type == CV_32F ? 1.0 / 255.0 : 1.0); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_img(img); |
|
cv::gpu::GpuMat dst; |
|
cv::gpu::GpuMat d_Dx; |
|
cv::gpu::GpuMat d_Dy; |
|
cv::gpu::GpuMat d_buf; |
|
|
|
TEST_CYCLE() cv::gpu::cornerMinEigenVal(d_img, dst, d_Dx, d_Dy, d_buf, blockSize, apertureSize, borderMode); |
|
|
|
GPU_SANITY_CHECK(dst, 1e-4); |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() cv::cornerMinEigenVal(img, dst, blockSize, apertureSize, borderMode); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// BuildWarpPlaneMaps |
|
|
|
PERF_TEST_P(Sz, ImgProc_BuildWarpPlaneMaps, |
|
GPU_TYPICAL_MAT_SIZES) |
|
{ |
|
const cv::Size size = GetParam(); |
|
|
|
const cv::Mat K = cv::Mat::eye(3, 3, CV_32FC1); |
|
const cv::Mat R = cv::Mat::ones(3, 3, CV_32FC1); |
|
const cv::Mat T = cv::Mat::zeros(1, 3, CV_32F); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::GpuMat map_x; |
|
cv::gpu::GpuMat map_y; |
|
|
|
TEST_CYCLE() cv::gpu::buildWarpPlaneMaps(size, cv::Rect(0, 0, size.width, size.height), K, R, T, 1.0, map_x, map_y); |
|
|
|
GPU_SANITY_CHECK(map_x); |
|
GPU_SANITY_CHECK(map_y); |
|
} |
|
else |
|
{ |
|
FAIL_NO_CPU(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// BuildWarpCylindricalMaps |
|
|
|
PERF_TEST_P(Sz, ImgProc_BuildWarpCylindricalMaps, |
|
GPU_TYPICAL_MAT_SIZES) |
|
{ |
|
const cv::Size size = GetParam(); |
|
|
|
const cv::Mat K = cv::Mat::eye(3, 3, CV_32FC1); |
|
const cv::Mat R = cv::Mat::ones(3, 3, CV_32FC1); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::GpuMat map_x; |
|
cv::gpu::GpuMat map_y; |
|
|
|
TEST_CYCLE() cv::gpu::buildWarpCylindricalMaps(size, cv::Rect(0, 0, size.width, size.height), K, R, 1.0, map_x, map_y); |
|
|
|
GPU_SANITY_CHECK(map_x); |
|
GPU_SANITY_CHECK(map_y); |
|
} |
|
else |
|
{ |
|
FAIL_NO_CPU(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// BuildWarpSphericalMaps |
|
|
|
PERF_TEST_P(Sz, ImgProc_BuildWarpSphericalMaps, |
|
GPU_TYPICAL_MAT_SIZES) |
|
{ |
|
const cv::Size size = GetParam(); |
|
|
|
const cv::Mat K = cv::Mat::eye(3, 3, CV_32FC1); |
|
const cv::Mat R = cv::Mat::ones(3, 3, CV_32FC1); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::GpuMat map_x; |
|
cv::gpu::GpuMat map_y; |
|
|
|
TEST_CYCLE() cv::gpu::buildWarpSphericalMaps(size, cv::Rect(0, 0, size.width, size.height), K, R, 1.0, map_x, map_y); |
|
|
|
GPU_SANITY_CHECK(map_x); |
|
GPU_SANITY_CHECK(map_y); |
|
} |
|
else |
|
{ |
|
FAIL_NO_CPU(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Rotate |
|
|
|
DEF_PARAM_TEST(Sz_Depth_Cn_Inter, cv::Size, MatDepth, MatCn, Interpolation); |
|
|
|
PERF_TEST_P(Sz_Depth_Cn_Inter, ImgProc_Rotate, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U, CV_32F), |
|
GPU_CHANNELS_1_3_4, |
|
Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)))) |
|
{ |
|
const cv::Size size = GET_PARAM(0); |
|
const int depth = GET_PARAM(1); |
|
const int channels = GET_PARAM(2); |
|
const int interpolation = GET_PARAM(3); |
|
|
|
const int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
cv::Mat src(size, type); |
|
declare.in(src, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat dst; |
|
|
|
TEST_CYCLE() cv::gpu::rotate(d_src, dst, size, 30.0, 0, 0, interpolation); |
|
|
|
GPU_SANITY_CHECK(dst, 1e-3, ERROR_RELATIVE); |
|
} |
|
else |
|
{ |
|
FAIL_NO_CPU(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// PyrDown |
|
|
|
PERF_TEST_P(Sz_Depth_Cn, ImgProc_PyrDown, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U, CV_32F), |
|
GPU_CHANNELS_1_3_4)) |
|
{ |
|
const cv::Size size = GET_PARAM(0); |
|
const int depth = GET_PARAM(1); |
|
const int channels = GET_PARAM(2); |
|
|
|
const int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
cv::Mat src(size, type); |
|
declare.in(src, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat dst; |
|
|
|
TEST_CYCLE() cv::gpu::pyrDown(d_src, dst); |
|
|
|
GPU_SANITY_CHECK(dst); |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() cv::pyrDown(src, dst); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// PyrUp |
|
|
|
PERF_TEST_P(Sz_Depth_Cn, ImgProc_PyrUp, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U, CV_32F), |
|
GPU_CHANNELS_1_3_4)) |
|
{ |
|
const cv::Size size = GET_PARAM(0); |
|
const int depth = GET_PARAM(1); |
|
const int channels = GET_PARAM(2); |
|
|
|
const int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
cv::Mat src(size, type); |
|
declare.in(src, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat dst; |
|
|
|
TEST_CYCLE() cv::gpu::pyrUp(d_src, dst); |
|
|
|
GPU_SANITY_CHECK(dst); |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() cv::pyrUp(src, dst); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// CvtColor |
|
|
|
DEF_PARAM_TEST(Sz_Depth_Code, cv::Size, MatDepth, CvtColorInfo); |
|
|
|
PERF_TEST_P(Sz_Depth_Code, ImgProc_CvtColor, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_32F), |
|
Values(CvtColorInfo(4, 4, cv::COLOR_RGBA2BGRA), |
|
CvtColorInfo(4, 1, cv::COLOR_BGRA2GRAY), |
|
CvtColorInfo(1, 4, cv::COLOR_GRAY2BGRA), |
|
CvtColorInfo(3, 3, cv::COLOR_BGR2XYZ), |
|
CvtColorInfo(3, 3, cv::COLOR_XYZ2BGR), |
|
CvtColorInfo(3, 3, cv::COLOR_BGR2YCrCb), |
|
CvtColorInfo(3, 3, cv::COLOR_YCrCb2BGR), |
|
CvtColorInfo(3, 3, cv::COLOR_BGR2YUV), |
|
CvtColorInfo(3, 3, cv::COLOR_YUV2BGR), |
|
CvtColorInfo(3, 3, cv::COLOR_BGR2HSV), |
|
CvtColorInfo(3, 3, cv::COLOR_HSV2BGR), |
|
CvtColorInfo(3, 3, cv::COLOR_BGR2HLS), |
|
CvtColorInfo(3, 3, cv::COLOR_HLS2BGR), |
|
CvtColorInfo(3, 3, cv::COLOR_BGR2Lab), |
|
CvtColorInfo(3, 3, cv::COLOR_LBGR2Lab), |
|
CvtColorInfo(3, 3, cv::COLOR_BGR2Luv), |
|
CvtColorInfo(3, 3, cv::COLOR_LBGR2Luv), |
|
CvtColorInfo(3, 3, cv::COLOR_Lab2BGR), |
|
CvtColorInfo(3, 3, cv::COLOR_Lab2LBGR), |
|
CvtColorInfo(3, 3, cv::COLOR_Luv2RGB), |
|
CvtColorInfo(3, 3, cv::COLOR_Luv2LRGB)))) |
|
{ |
|
const cv::Size size = GET_PARAM(0); |
|
const int depth = GET_PARAM(1); |
|
const CvtColorInfo info = GET_PARAM(2); |
|
|
|
cv::Mat src(size, CV_MAKETYPE(depth, info.scn)); |
|
cv::randu(src, 0, depth == CV_8U ? 255.0 : 1.0); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat dst; |
|
|
|
TEST_CYCLE() cv::gpu::cvtColor(d_src, dst, info.code, info.dcn); |
|
|
|
GPU_SANITY_CHECK(dst, 1e-2); |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() cv::cvtColor(src, dst, info.code, info.dcn); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
|
|
PERF_TEST_P(Sz_Depth_Code, ImgProc_CvtColorBayer, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U), |
|
Values(CvtColorInfo(1, 3, cv::COLOR_BayerBG2BGR), |
|
CvtColorInfo(1, 3, cv::COLOR_BayerGB2BGR), |
|
CvtColorInfo(1, 3, cv::COLOR_BayerRG2BGR), |
|
CvtColorInfo(1, 3, cv::COLOR_BayerGR2BGR), |
|
|
|
CvtColorInfo(1, 1, cv::COLOR_BayerBG2GRAY), |
|
CvtColorInfo(1, 1, cv::COLOR_BayerGB2GRAY), |
|
CvtColorInfo(1, 1, cv::COLOR_BayerRG2GRAY), |
|
CvtColorInfo(1, 1, cv::COLOR_BayerGR2GRAY)))) |
|
{ |
|
const cv::Size size = GET_PARAM(0); |
|
const int depth = GET_PARAM(1); |
|
const CvtColorInfo info = GET_PARAM(2); |
|
|
|
cv::Mat src(size, CV_MAKETYPE(depth, info.scn)); |
|
declare.in(src, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat dst; |
|
|
|
TEST_CYCLE() cv::gpu::cvtColor(d_src, dst, info.code, info.dcn); |
|
|
|
GPU_SANITY_CHECK(dst); |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() cv::cvtColor(src, dst, info.code, info.dcn); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
|
|
CV_ENUM(DemosaicingCode, |
|
COLOR_BayerBG2BGR, COLOR_BayerGB2BGR, COLOR_BayerRG2BGR, COLOR_BayerGR2BGR, |
|
COLOR_BayerBG2GRAY, COLOR_BayerGB2GRAY, COLOR_BayerRG2GRAY, COLOR_BayerGR2GRAY, |
|
COLOR_BayerBG2BGR_MHT, COLOR_BayerGB2BGR_MHT, COLOR_BayerRG2BGR_MHT, COLOR_BayerGR2BGR_MHT, |
|
COLOR_BayerBG2GRAY_MHT, COLOR_BayerGB2GRAY_MHT, COLOR_BayerRG2GRAY_MHT, COLOR_BayerGR2GRAY_MHT) |
|
|
|
DEF_PARAM_TEST(Sz_Code, cv::Size, DemosaicingCode); |
|
|
|
PERF_TEST_P(Sz_Code, ImgProc_Demosaicing, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
DemosaicingCode::all())) |
|
{ |
|
const cv::Size size = GET_PARAM(0); |
|
const int code = GET_PARAM(1); |
|
|
|
cv::Mat src(size, CV_8UC1); |
|
declare.in(src, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat dst; |
|
|
|
TEST_CYCLE() cv::gpu::demosaicing(d_src, dst, code); |
|
|
|
GPU_SANITY_CHECK(dst); |
|
} |
|
else |
|
{ |
|
if (code >= cv::COLOR_COLORCVT_MAX) |
|
{ |
|
FAIL_NO_CPU(); |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
TEST_CYCLE() cv::cvtColor(src, dst, code); |
|
|
|
CPU_SANITY_CHECK(dst); |
|
} |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// SwapChannels |
|
|
|
PERF_TEST_P(Sz, ImgProc_SwapChannels, |
|
GPU_TYPICAL_MAT_SIZES) |
|
{ |
|
const cv::Size size = GetParam(); |
|
|
|
cv::Mat src(size, CV_8UC4); |
|
declare.in(src, WARMUP_RNG); |
|
|
|
const int dstOrder[] = {2, 1, 0, 3}; |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::GpuMat dst(src); |
|
|
|
TEST_CYCLE() cv::gpu::swapChannels(dst, dstOrder); |
|
|
|
GPU_SANITY_CHECK(dst); |
|
} |
|
else |
|
{ |
|
FAIL_NO_CPU(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// AlphaComp |
|
|
|
CV_ENUM(AlphaOp, ALPHA_OVER, ALPHA_IN, ALPHA_OUT, ALPHA_ATOP, ALPHA_XOR, ALPHA_PLUS, ALPHA_OVER_PREMUL, ALPHA_IN_PREMUL, ALPHA_OUT_PREMUL, ALPHA_ATOP_PREMUL, ALPHA_XOR_PREMUL, ALPHA_PLUS_PREMUL, ALPHA_PREMUL) |
|
|
|
DEF_PARAM_TEST(Sz_Type_Op, cv::Size, MatType, AlphaOp); |
|
|
|
PERF_TEST_P(Sz_Type_Op, DISABLED_ImgProc_AlphaComp, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8UC4, CV_16UC4, CV_32SC4, CV_32FC4), |
|
AlphaOp::all())) |
|
{ |
|
const cv::Size size = GET_PARAM(0); |
|
const int type = GET_PARAM(1); |
|
const int alpha_op = GET_PARAM(2); |
|
|
|
cv::Mat img1(size, type); |
|
cv::Mat img2(size, type); |
|
declare.in(img1, img2, WARMUP_RNG); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_img1(img1); |
|
const cv::gpu::GpuMat d_img2(img2); |
|
cv::gpu::GpuMat dst; |
|
|
|
TEST_CYCLE() cv::gpu::alphaComp(d_img1, d_img2, dst, alpha_op); |
|
|
|
if (CV_MAT_DEPTH(type) < CV_32F) |
|
{ |
|
GPU_SANITY_CHECK(dst, 1); |
|
} |
|
else |
|
{ |
|
GPU_SANITY_CHECK(dst, 1e-3, ERROR_RELATIVE); |
|
} |
|
} |
|
else |
|
{ |
|
FAIL_NO_CPU(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// ImagePyramidBuild |
|
|
|
PERF_TEST_P(Sz_Depth_Cn, ImgProc_ImagePyramidBuild, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U, CV_32F), |
|
GPU_CHANNELS_1_3_4)) |
|
{ |
|
const cv::Size size = GET_PARAM(0); |
|
const int depth = GET_PARAM(1); |
|
const int channels = GET_PARAM(2); |
|
|
|
const int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
cv::Mat src(size, type); |
|
declare.in(src, WARMUP_RNG); |
|
|
|
const int nLayers = 5; |
|
const cv::Size dstSize(size.width / 2 + 10, size.height / 2 + 10); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(src); |
|
|
|
cv::gpu::ImagePyramid d_pyr; |
|
|
|
TEST_CYCLE() d_pyr.build(d_src, nLayers); |
|
|
|
cv::gpu::GpuMat dst; |
|
d_pyr.getLayer(dst, dstSize); |
|
|
|
GPU_SANITY_CHECK(dst, 1e-3); |
|
} |
|
else |
|
{ |
|
FAIL_NO_CPU(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// ImagePyramidGetLayer |
|
|
|
PERF_TEST_P(Sz_Depth_Cn, ImgProc_ImagePyramidGetLayer, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U, CV_32F), |
|
GPU_CHANNELS_1_3_4)) |
|
{ |
|
const cv::Size size = GET_PARAM(0); |
|
const int depth = GET_PARAM(1); |
|
const int channels = GET_PARAM(2); |
|
|
|
const int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
cv::Mat src(size, type); |
|
declare.in(src, WARMUP_RNG); |
|
|
|
const int nLayers = 3; |
|
const cv::Size dstSize(size.width / 2 + 10, size.height / 2 + 10); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat dst; |
|
|
|
cv::gpu::ImagePyramid d_pyr(d_src, nLayers); |
|
|
|
TEST_CYCLE() d_pyr.getLayer(dst, dstSize); |
|
|
|
GPU_SANITY_CHECK(dst, 1e-3); |
|
} |
|
else |
|
{ |
|
FAIL_NO_CPU(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// HoughLines |
|
|
|
namespace |
|
{ |
|
struct Vec4iComparator |
|
{ |
|
bool operator()(const cv::Vec4i& a, const cv::Vec4i b) const |
|
{ |
|
if (a[0] != b[0]) return a[0] < b[0]; |
|
else if(a[1] != b[1]) return a[1] < b[1]; |
|
else if(a[2] != b[2]) return a[2] < b[2]; |
|
else return a[3] < b[3]; |
|
} |
|
}; |
|
struct Vec3fComparator |
|
{ |
|
bool operator()(const cv::Vec3f& a, const cv::Vec3f b) const |
|
{ |
|
if(a[0] != b[0]) return a[0] < b[0]; |
|
else if(a[1] != b[1]) return a[1] < b[1]; |
|
else return a[2] < b[2]; |
|
} |
|
}; |
|
struct Vec2fComparator |
|
{ |
|
bool operator()(const cv::Vec2f& a, const cv::Vec2f b) const |
|
{ |
|
if(a[0] != b[0]) return a[0] < b[0]; |
|
else return a[1] < b[1]; |
|
} |
|
}; |
|
} |
|
|
|
PERF_TEST_P(Sz, ImgProc_HoughLines, |
|
GPU_TYPICAL_MAT_SIZES) |
|
{ |
|
declare.time(30.0); |
|
|
|
const cv::Size size = GetParam(); |
|
|
|
const float rho = 1.0f; |
|
const float theta = static_cast<float>(CV_PI / 180.0); |
|
const int threshold = 300; |
|
|
|
cv::Mat src(size, CV_8UC1, cv::Scalar::all(0)); |
|
cv::line(src, cv::Point(0, 100), cv::Point(src.cols, 100), cv::Scalar::all(255), 1); |
|
cv::line(src, cv::Point(0, 200), cv::Point(src.cols, 200), cv::Scalar::all(255), 1); |
|
cv::line(src, cv::Point(0, 400), cv::Point(src.cols, 400), cv::Scalar::all(255), 1); |
|
cv::line(src, cv::Point(100, 0), cv::Point(100, src.rows), cv::Scalar::all(255), 1); |
|
cv::line(src, cv::Point(200, 0), cv::Point(200, src.rows), cv::Scalar::all(255), 1); |
|
cv::line(src, cv::Point(400, 0), cv::Point(400, src.rows), cv::Scalar::all(255), 1); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat d_lines; |
|
cv::gpu::HoughLinesBuf d_buf; |
|
|
|
TEST_CYCLE() cv::gpu::HoughLines(d_src, d_lines, d_buf, rho, theta, threshold); |
|
|
|
cv::Mat gpu_lines(d_lines.row(0)); |
|
cv::Vec2f* begin = gpu_lines.ptr<cv::Vec2f>(0); |
|
cv::Vec2f* end = begin + gpu_lines.cols; |
|
std::sort(begin, end, Vec2fComparator()); |
|
SANITY_CHECK(gpu_lines); |
|
} |
|
else |
|
{ |
|
std::vector<cv::Vec2f> cpu_lines; |
|
|
|
TEST_CYCLE() cv::HoughLines(src, cpu_lines, rho, theta, threshold); |
|
|
|
SANITY_CHECK(cpu_lines); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// HoughLinesP |
|
|
|
DEF_PARAM_TEST_1(Image, std::string); |
|
|
|
PERF_TEST_P(Image, ImgProc_HoughLinesP, |
|
testing::Values("cv/shared/pic5.png", "stitching/a1.png")) |
|
{ |
|
declare.time(30.0); |
|
|
|
const std::string fileName = getDataPath(GetParam()); |
|
|
|
const float rho = 1.0f; |
|
const float theta = static_cast<float>(CV_PI / 180.0); |
|
const int threshold = 100; |
|
const int minLineLength = 50; |
|
const int maxLineGap = 5; |
|
|
|
const cv::Mat image = cv::imread(fileName, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(image.empty()); |
|
|
|
cv::Mat mask; |
|
cv::Canny(image, mask, 50, 100); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_mask(mask); |
|
cv::gpu::GpuMat d_lines; |
|
cv::gpu::HoughLinesBuf d_buf; |
|
|
|
TEST_CYCLE() cv::gpu::HoughLinesP(d_mask, d_lines, d_buf, rho, theta, minLineLength, maxLineGap); |
|
|
|
cv::Mat gpu_lines(d_lines); |
|
cv::Vec4i* begin = gpu_lines.ptr<cv::Vec4i>(); |
|
cv::Vec4i* end = begin + gpu_lines.cols; |
|
std::sort(begin, end, Vec4iComparator()); |
|
SANITY_CHECK(gpu_lines); |
|
} |
|
else |
|
{ |
|
std::vector<cv::Vec4i> cpu_lines; |
|
|
|
TEST_CYCLE() cv::HoughLinesP(mask, cpu_lines, rho, theta, threshold, minLineLength, maxLineGap); |
|
|
|
SANITY_CHECK(cpu_lines); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// HoughCircles |
|
|
|
DEF_PARAM_TEST(Sz_Dp_MinDist, cv::Size, float, float); |
|
|
|
PERF_TEST_P(Sz_Dp_MinDist, ImgProc_HoughCircles, |
|
Combine(GPU_TYPICAL_MAT_SIZES, |
|
Values(1.0f, 2.0f, 4.0f), |
|
Values(1.0f))) |
|
{ |
|
declare.time(30.0); |
|
|
|
const cv::Size size = GET_PARAM(0); |
|
const float dp = GET_PARAM(1); |
|
const float minDist = GET_PARAM(2); |
|
|
|
const int minRadius = 10; |
|
const int maxRadius = 30; |
|
const int cannyThreshold = 100; |
|
const int votesThreshold = 15; |
|
|
|
cv::Mat src(size, CV_8UC1, cv::Scalar::all(0)); |
|
cv::circle(src, cv::Point(100, 100), 20, cv::Scalar::all(255), -1); |
|
cv::circle(src, cv::Point(200, 200), 25, cv::Scalar::all(255), -1); |
|
cv::circle(src, cv::Point(200, 100), 25, cv::Scalar::all(255), -1); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat d_circles; |
|
cv::gpu::HoughCirclesBuf d_buf; |
|
|
|
TEST_CYCLE() cv::gpu::HoughCircles(d_src, d_circles, d_buf, CV_HOUGH_GRADIENT, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius); |
|
|
|
cv::Mat gpu_circles(d_circles); |
|
cv::Vec3f* begin = gpu_circles.ptr<cv::Vec3f>(0); |
|
cv::Vec3f* end = begin + gpu_circles.cols; |
|
std::sort(begin, end, Vec3fComparator()); |
|
SANITY_CHECK(gpu_circles); |
|
} |
|
else |
|
{ |
|
std::vector<cv::Vec3f> cpu_circles; |
|
|
|
TEST_CYCLE() cv::HoughCircles(src, cpu_circles, CV_HOUGH_GRADIENT, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius); |
|
|
|
SANITY_CHECK(cpu_circles); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// GeneralizedHough |
|
|
|
#if !defined(__GNUC__) || (__GNUC__ * 10 + __GNUC_MINOR__ != 47) |
|
|
|
CV_FLAGS(GHMethod, GHT_POSITION, GHT_SCALE, GHT_ROTATION) |
|
|
|
DEF_PARAM_TEST(Method_Sz, GHMethod, cv::Size); |
|
|
|
PERF_TEST_P(Method_Sz, DISABLED_ImgProc_GeneralizedHough, |
|
Combine(Values(GHMethod(cv::GHT_POSITION), GHMethod(cv::GHT_POSITION | cv::GHT_SCALE), GHMethod(cv::GHT_POSITION | cv::GHT_ROTATION), GHMethod(cv::GHT_POSITION | cv::GHT_SCALE | cv::GHT_ROTATION)), |
|
GPU_TYPICAL_MAT_SIZES)) |
|
{ |
|
declare.time(10); |
|
|
|
const int method = GET_PARAM(0); |
|
const cv::Size imageSize = GET_PARAM(1); |
|
|
|
const cv::Mat templ = readImage("cv/shared/templ.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(templ.empty()); |
|
|
|
cv::Mat image(imageSize, CV_8UC1, cv::Scalar::all(0)); |
|
templ.copyTo(image(cv::Rect(50, 50, templ.cols, templ.rows))); |
|
|
|
cv::RNG rng(123456789); |
|
const int objCount = rng.uniform(5, 15); |
|
for (int i = 0; i < objCount; ++i) |
|
{ |
|
double scale = rng.uniform(0.7, 1.3); |
|
bool rotate = 1 == rng.uniform(0, 2); |
|
|
|
cv::Mat obj; |
|
cv::resize(templ, obj, cv::Size(), scale, scale); |
|
if (rotate) |
|
obj = obj.t(); |
|
|
|
cv::Point pos; |
|
|
|
pos.x = rng.uniform(0, image.cols - obj.cols); |
|
pos.y = rng.uniform(0, image.rows - obj.rows); |
|
|
|
cv::Mat roi = image(cv::Rect(pos, obj.size())); |
|
cv::add(roi, obj, roi); |
|
} |
|
|
|
cv::Mat edges; |
|
cv::Canny(image, edges, 50, 100); |
|
|
|
cv::Mat dx, dy; |
|
cv::Sobel(image, dx, CV_32F, 1, 0); |
|
cv::Sobel(image, dy, CV_32F, 0, 1); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_edges(edges); |
|
const cv::gpu::GpuMat d_dx(dx); |
|
const cv::gpu::GpuMat d_dy(dy); |
|
cv::gpu::GpuMat posAndVotes; |
|
|
|
cv::Ptr<cv::gpu::GeneralizedHough_GPU> d_hough = cv::gpu::GeneralizedHough_GPU::create(method); |
|
if (method & cv::GHT_ROTATION) |
|
{ |
|
d_hough->set("maxAngle", 90.0); |
|
d_hough->set("angleStep", 2.0); |
|
} |
|
|
|
d_hough->setTemplate(cv::gpu::GpuMat(templ)); |
|
|
|
TEST_CYCLE() d_hough->detect(d_edges, d_dx, d_dy, posAndVotes); |
|
|
|
const cv::gpu::GpuMat positions(1, posAndVotes.cols, CV_32FC4, posAndVotes.data); |
|
GPU_SANITY_CHECK(positions); |
|
} |
|
else |
|
{ |
|
cv::Mat positions; |
|
|
|
cv::Ptr<cv::GeneralizedHough> hough = cv::GeneralizedHough::create(method); |
|
if (method & cv::GHT_ROTATION) |
|
{ |
|
hough->set("maxAngle", 90.0); |
|
hough->set("angleStep", 2.0); |
|
} |
|
|
|
hough->setTemplate(templ); |
|
|
|
TEST_CYCLE() hough->detect(edges, dx, dy, positions); |
|
|
|
CPU_SANITY_CHECK(positions); |
|
} |
|
} |
|
|
|
#endif
|
|
|