mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
498 lines
14 KiB
498 lines
14 KiB
// This sample demonstrates working on one piece of data using two GPUs. |
|
// It splits input into two parts and processes them separately on different GPUs. |
|
|
|
#ifdef WIN32 |
|
#define NOMINMAX |
|
#include <windows.h> |
|
#else |
|
#include <pthread.h> |
|
#include <unistd.h> |
|
#endif |
|
|
|
#include <iostream> |
|
#include <iomanip> |
|
|
|
#include "opencv2/core.hpp" |
|
#include "opencv2/highgui.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
#include "opencv2/cudastereo.hpp" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::cuda; |
|
|
|
/////////////////////////////////////////////////////////// |
|
// Thread |
|
// OS-specific wrappers for multi-threading |
|
|
|
#ifdef WIN32 |
|
class Thread |
|
{ |
|
struct UserData |
|
{ |
|
void (*func)(void* userData); |
|
void* param; |
|
}; |
|
|
|
static DWORD WINAPI WinThreadFunction(LPVOID lpParam) |
|
{ |
|
UserData* userData = static_cast<UserData*>(lpParam); |
|
|
|
userData->func(userData->param); |
|
|
|
return 0; |
|
} |
|
|
|
UserData userData_; |
|
HANDLE thread_; |
|
DWORD threadId_; |
|
|
|
public: |
|
Thread(void (*func)(void* userData), void* userData) |
|
{ |
|
userData_.func = func; |
|
userData_.param = userData; |
|
|
|
thread_ = CreateThread( |
|
NULL, // default security attributes |
|
0, // use default stack size |
|
WinThreadFunction, // thread function name |
|
&userData_, // argument to thread function |
|
0, // use default creation flags |
|
&threadId_); // returns the thread identifier |
|
} |
|
|
|
~Thread() |
|
{ |
|
CloseHandle(thread_); |
|
} |
|
|
|
void wait() |
|
{ |
|
WaitForSingleObject(thread_, INFINITE); |
|
} |
|
}; |
|
#else |
|
class Thread |
|
{ |
|
struct UserData |
|
{ |
|
void (*func)(void* userData); |
|
void* param; |
|
}; |
|
|
|
static void* PThreadFunction(void* lpParam) |
|
{ |
|
UserData* userData = static_cast<UserData*>(lpParam); |
|
|
|
userData->func(userData->param); |
|
|
|
return 0; |
|
} |
|
|
|
pthread_t thread_; |
|
UserData userData_; |
|
|
|
public: |
|
Thread(void (*func)(void* userData), void* userData) |
|
{ |
|
userData_.func = func; |
|
userData_.param = userData; |
|
|
|
pthread_create(&thread_, NULL, PThreadFunction, &userData_); |
|
} |
|
|
|
~Thread() |
|
{ |
|
pthread_detach(thread_); |
|
} |
|
|
|
void wait() |
|
{ |
|
pthread_join(thread_, NULL); |
|
} |
|
}; |
|
#endif |
|
|
|
/////////////////////////////////////////////////////////// |
|
// StereoSingleGpu |
|
// Run Stereo algorithm on single GPU |
|
|
|
class StereoSingleGpu |
|
{ |
|
public: |
|
explicit StereoSingleGpu(int deviceId = 0); |
|
~StereoSingleGpu(); |
|
|
|
void compute(const Mat& leftFrame, const Mat& rightFrame, Mat& disparity); |
|
|
|
private: |
|
int deviceId_; |
|
GpuMat d_leftFrame; |
|
GpuMat d_rightFrame; |
|
GpuMat d_disparity; |
|
Ptr<cuda::StereoBM> d_alg; |
|
}; |
|
|
|
StereoSingleGpu::StereoSingleGpu(int deviceId) : deviceId_(deviceId) |
|
{ |
|
cuda::setDevice(deviceId_); |
|
d_alg = cuda::createStereoBM(256); |
|
} |
|
|
|
StereoSingleGpu::~StereoSingleGpu() |
|
{ |
|
cuda::setDevice(deviceId_); |
|
d_leftFrame.release(); |
|
d_rightFrame.release(); |
|
d_disparity.release(); |
|
d_alg.release(); |
|
} |
|
|
|
void StereoSingleGpu::compute(const Mat& leftFrame, const Mat& rightFrame, Mat& disparity) |
|
{ |
|
cuda::setDevice(deviceId_); |
|
d_leftFrame.upload(leftFrame); |
|
d_rightFrame.upload(rightFrame); |
|
d_alg->compute(d_leftFrame, d_rightFrame, d_disparity); |
|
d_disparity.download(disparity); |
|
} |
|
|
|
/////////////////////////////////////////////////////////// |
|
// StereoMultiGpuThread |
|
// Run Stereo algorithm on two GPUs using different host threads |
|
|
|
class StereoMultiGpuThread |
|
{ |
|
public: |
|
StereoMultiGpuThread(); |
|
~StereoMultiGpuThread(); |
|
|
|
void compute(const Mat& leftFrame, const Mat& rightFrame, Mat& disparity); |
|
|
|
private: |
|
GpuMat d_leftFrames[2]; |
|
GpuMat d_rightFrames[2]; |
|
GpuMat d_disparities[2]; |
|
Ptr<cuda::StereoBM> d_algs[2]; |
|
|
|
struct StereoLaunchData |
|
{ |
|
int deviceId; |
|
Mat leftFrame; |
|
Mat rightFrame; |
|
Mat disparity; |
|
GpuMat* d_leftFrame; |
|
GpuMat* d_rightFrame; |
|
GpuMat* d_disparity; |
|
Ptr<cuda::StereoBM> d_alg; |
|
}; |
|
|
|
static void launchGpuStereoAlg(void* userData); |
|
}; |
|
|
|
StereoMultiGpuThread::StereoMultiGpuThread() |
|
{ |
|
cuda::setDevice(0); |
|
d_algs[0] = cuda::createStereoBM(256); |
|
|
|
cuda::setDevice(1); |
|
d_algs[1] = cuda::createStereoBM(256); |
|
} |
|
|
|
StereoMultiGpuThread::~StereoMultiGpuThread() |
|
{ |
|
cuda::setDevice(0); |
|
d_leftFrames[0].release(); |
|
d_rightFrames[0].release(); |
|
d_disparities[0].release(); |
|
d_algs[0].release(); |
|
|
|
cuda::setDevice(1); |
|
d_leftFrames[1].release(); |
|
d_rightFrames[1].release(); |
|
d_disparities[1].release(); |
|
d_algs[1].release(); |
|
} |
|
|
|
void StereoMultiGpuThread::compute(const Mat& leftFrame, const Mat& rightFrame, Mat& disparity) |
|
{ |
|
disparity.create(leftFrame.size(), CV_8UC1); |
|
|
|
// Split input data onto two parts for each GPUs. |
|
// We add small border for each part, |
|
// because original algorithm doesn't calculate disparity on image borders. |
|
// With such padding we will get output in the middle of final result. |
|
|
|
StereoLaunchData launchDatas[2]; |
|
|
|
launchDatas[0].deviceId = 0; |
|
launchDatas[0].leftFrame = leftFrame.rowRange(0, leftFrame.rows / 2 + 32); |
|
launchDatas[0].rightFrame = rightFrame.rowRange(0, rightFrame.rows / 2 + 32); |
|
launchDatas[0].disparity = disparity.rowRange(0, leftFrame.rows / 2); |
|
launchDatas[0].d_leftFrame = &d_leftFrames[0]; |
|
launchDatas[0].d_rightFrame = &d_rightFrames[0]; |
|
launchDatas[0].d_disparity = &d_disparities[0]; |
|
launchDatas[0].d_alg = d_algs[0]; |
|
|
|
launchDatas[1].deviceId = 1; |
|
launchDatas[1].leftFrame = leftFrame.rowRange(leftFrame.rows / 2 - 32, leftFrame.rows); |
|
launchDatas[1].rightFrame = rightFrame.rowRange(leftFrame.rows / 2 - 32, leftFrame.rows); |
|
launchDatas[1].disparity = disparity.rowRange(leftFrame.rows / 2, leftFrame.rows); |
|
launchDatas[1].d_leftFrame = &d_leftFrames[1]; |
|
launchDatas[1].d_rightFrame = &d_rightFrames[1]; |
|
launchDatas[1].d_disparity = &d_disparities[1]; |
|
launchDatas[1].d_alg = d_algs[1]; |
|
|
|
Thread thread0(launchGpuStereoAlg, &launchDatas[0]); |
|
Thread thread1(launchGpuStereoAlg, &launchDatas[1]); |
|
|
|
thread0.wait(); |
|
thread1.wait(); |
|
} |
|
|
|
void StereoMultiGpuThread::launchGpuStereoAlg(void* userData) |
|
{ |
|
StereoLaunchData* data = static_cast<StereoLaunchData*>(userData); |
|
|
|
cuda::setDevice(data->deviceId); |
|
data->d_leftFrame->upload(data->leftFrame); |
|
data->d_rightFrame->upload(data->rightFrame); |
|
data->d_alg->compute(*data->d_leftFrame, *data->d_rightFrame, *data->d_disparity); |
|
|
|
if (data->deviceId == 0) |
|
data->d_disparity->rowRange(0, data->d_disparity->rows - 32).download(data->disparity); |
|
else |
|
data->d_disparity->rowRange(32, data->d_disparity->rows).download(data->disparity); |
|
} |
|
|
|
/////////////////////////////////////////////////////////// |
|
// StereoMultiGpuStream |
|
// Run Stereo algorithm on two GPUs from single host thread using async API |
|
|
|
class StereoMultiGpuStream |
|
{ |
|
public: |
|
StereoMultiGpuStream(); |
|
~StereoMultiGpuStream(); |
|
|
|
void compute(const HostMem& leftFrame, const HostMem& rightFrame, HostMem& disparity); |
|
|
|
private: |
|
GpuMat d_leftFrames[2]; |
|
GpuMat d_rightFrames[2]; |
|
GpuMat d_disparities[2]; |
|
Ptr<cuda::StereoBM> d_algs[2]; |
|
Ptr<Stream> streams[2]; |
|
}; |
|
|
|
StereoMultiGpuStream::StereoMultiGpuStream() |
|
{ |
|
cuda::setDevice(0); |
|
d_algs[0] = cuda::createStereoBM(256); |
|
streams[0] = makePtr<Stream>(); |
|
|
|
cuda::setDevice(1); |
|
d_algs[1] = cuda::createStereoBM(256); |
|
streams[1] = makePtr<Stream>(); |
|
} |
|
|
|
StereoMultiGpuStream::~StereoMultiGpuStream() |
|
{ |
|
cuda::setDevice(0); |
|
d_leftFrames[0].release(); |
|
d_rightFrames[0].release(); |
|
d_disparities[0].release(); |
|
d_algs[0].release(); |
|
streams[0].release(); |
|
|
|
cuda::setDevice(1); |
|
d_leftFrames[1].release(); |
|
d_rightFrames[1].release(); |
|
d_disparities[1].release(); |
|
d_algs[1].release(); |
|
streams[1].release(); |
|
} |
|
|
|
void StereoMultiGpuStream::compute(const HostMem& leftFrame, const HostMem& rightFrame, HostMem& disparity) |
|
{ |
|
disparity.create(leftFrame.size(), CV_8UC1); |
|
|
|
// Split input data onto two parts for each GPUs. |
|
// We add small border for each part, |
|
// because original algorithm doesn't calculate disparity on image borders. |
|
// With such padding we will get output in the middle of final result. |
|
|
|
Mat leftFrameHdr = leftFrame.createMatHeader(); |
|
Mat rightFrameHdr = rightFrame.createMatHeader(); |
|
Mat disparityHdr = disparity.createMatHeader(); |
|
Mat disparityPart0 = disparityHdr.rowRange(0, leftFrame.rows / 2); |
|
Mat disparityPart1 = disparityHdr.rowRange(leftFrame.rows / 2, leftFrame.rows); |
|
|
|
cuda::setDevice(0); |
|
d_leftFrames[0].upload(leftFrameHdr.rowRange(0, leftFrame.rows / 2 + 32), *streams[0]); |
|
d_rightFrames[0].upload(rightFrameHdr.rowRange(0, leftFrame.rows / 2 + 32), *streams[0]); |
|
d_algs[0]->compute(d_leftFrames[0], d_rightFrames[0], d_disparities[0], *streams[0]); |
|
d_disparities[0].rowRange(0, leftFrame.rows / 2).download(disparityPart0, *streams[0]); |
|
|
|
cuda::setDevice(1); |
|
d_leftFrames[1].upload(leftFrameHdr.rowRange(leftFrame.rows / 2 - 32, leftFrame.rows), *streams[1]); |
|
d_rightFrames[1].upload(rightFrameHdr.rowRange(leftFrame.rows / 2 - 32, leftFrame.rows), *streams[1]); |
|
d_algs[1]->compute(d_leftFrames[1], d_rightFrames[1], d_disparities[1], *streams[1]); |
|
d_disparities[1].rowRange(32, d_disparities[1].rows).download(disparityPart1, *streams[1]); |
|
|
|
cuda::setDevice(0); |
|
streams[0]->waitForCompletion(); |
|
|
|
cuda::setDevice(1); |
|
streams[1]->waitForCompletion(); |
|
} |
|
|
|
/////////////////////////////////////////////////////////// |
|
// main |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
if (argc != 3) |
|
{ |
|
cerr << "Usage: stereo_multi_gpu <left_video> <right_video>" << endl; |
|
return -1; |
|
} |
|
|
|
const int numDevices = getCudaEnabledDeviceCount(); |
|
if (numDevices != 2) |
|
{ |
|
cerr << "Two GPUs are required" << endl; |
|
return -1; |
|
} |
|
|
|
for (int i = 0; i < numDevices; ++i) |
|
{ |
|
DeviceInfo devInfo(i); |
|
if (!devInfo.isCompatible()) |
|
{ |
|
cerr << "CUDA module was't built for GPU #" << i << " (" |
|
<< devInfo.name() << ", CC " << devInfo.majorVersion() |
|
<< devInfo.minorVersion() << endl; |
|
return -1; |
|
} |
|
|
|
printShortCudaDeviceInfo(i); |
|
} |
|
|
|
VideoCapture leftVideo(argv[1]); |
|
VideoCapture rightVideo(argv[2]); |
|
|
|
if (!leftVideo.isOpened()) |
|
{ |
|
cerr << "Can't open " << argv[1] << " video file" << endl; |
|
return -1; |
|
} |
|
|
|
if (!rightVideo.isOpened()) |
|
{ |
|
cerr << "Can't open " << argv[2] << " video file" << endl; |
|
return -1; |
|
} |
|
|
|
cout << endl; |
|
cout << "This sample demonstrates working on one piece of data using two GPUs." << endl; |
|
cout << "It splits input into two parts and processes them separately on different GPUs." << endl; |
|
cout << endl; |
|
|
|
Mat leftFrame, rightFrame; |
|
HostMem leftGrayFrame, rightGrayFrame; |
|
|
|
StereoSingleGpu gpu0Alg(0); |
|
StereoSingleGpu gpu1Alg(1); |
|
StereoMultiGpuThread multiThreadAlg; |
|
StereoMultiGpuStream multiStreamAlg; |
|
|
|
Mat disparityGpu0; |
|
Mat disparityGpu1; |
|
Mat disparityMultiThread; |
|
HostMem disparityMultiStream; |
|
|
|
Mat disparityGpu0Show; |
|
Mat disparityGpu1Show; |
|
Mat disparityMultiThreadShow; |
|
Mat disparityMultiStreamShow; |
|
|
|
TickMeter tm; |
|
|
|
cout << "-------------------------------------------------------------------" << endl; |
|
cout << "| Frame | GPU 0 ms | GPU 1 ms | Multi Thread ms | Multi Stream ms |" << endl; |
|
cout << "-------------------------------------------------------------------" << endl; |
|
|
|
for (int i = 0;; ++i) |
|
{ |
|
leftVideo >> leftFrame; |
|
rightVideo >> rightFrame; |
|
|
|
if (leftFrame.empty() || rightFrame.empty()) |
|
break; |
|
|
|
if (leftFrame.size() != rightFrame.size()) |
|
{ |
|
cerr << "Frames have different sizes" << endl; |
|
return -1; |
|
} |
|
|
|
leftGrayFrame.create(leftFrame.size(), CV_8UC1); |
|
rightGrayFrame.create(leftFrame.size(), CV_8UC1); |
|
|
|
cvtColor(leftFrame, leftGrayFrame.createMatHeader(), COLOR_BGR2GRAY); |
|
cvtColor(rightFrame, rightGrayFrame.createMatHeader(), COLOR_BGR2GRAY); |
|
|
|
tm.reset(); tm.start(); |
|
gpu0Alg.compute(leftGrayFrame.createMatHeader(), rightGrayFrame.createMatHeader(), |
|
disparityGpu0); |
|
tm.stop(); |
|
|
|
const double gpu0Time = tm.getTimeMilli(); |
|
|
|
tm.reset(); tm.start(); |
|
gpu1Alg.compute(leftGrayFrame.createMatHeader(), rightGrayFrame.createMatHeader(), |
|
disparityGpu1); |
|
tm.stop(); |
|
|
|
const double gpu1Time = tm.getTimeMilli(); |
|
|
|
tm.reset(); tm.start(); |
|
multiThreadAlg.compute(leftGrayFrame.createMatHeader(), rightGrayFrame.createMatHeader(), |
|
disparityMultiThread); |
|
tm.stop(); |
|
|
|
const double multiThreadTime = tm.getTimeMilli(); |
|
|
|
tm.reset(); tm.start(); |
|
multiStreamAlg.compute(leftGrayFrame, rightGrayFrame, disparityMultiStream); |
|
tm.stop(); |
|
|
|
const double multiStreamTime = tm.getTimeMilli(); |
|
|
|
cout << "| " << setw(5) << i << " | " |
|
<< setw(8) << setprecision(1) << fixed << gpu0Time << " | " |
|
<< setw(8) << setprecision(1) << fixed << gpu1Time << " | " |
|
<< setw(15) << setprecision(1) << fixed << multiThreadTime << " | " |
|
<< setw(15) << setprecision(1) << fixed << multiStreamTime << " |" << endl; |
|
|
|
resize(disparityGpu0, disparityGpu0Show, Size(1024, 768), 0, 0, INTER_AREA); |
|
resize(disparityGpu1, disparityGpu1Show, Size(1024, 768), 0, 0, INTER_AREA); |
|
resize(disparityMultiThread, disparityMultiThreadShow, Size(1024, 768), 0, 0, INTER_AREA); |
|
resize(disparityMultiStream.createMatHeader(), disparityMultiStreamShow, Size(1024, 768), 0, 0, INTER_AREA); |
|
|
|
imshow("disparityGpu0", disparityGpu0Show); |
|
imshow("disparityGpu1", disparityGpu1Show); |
|
imshow("disparityMultiThread", disparityMultiThreadShow); |
|
imshow("disparityMultiStream", disparityMultiStreamShow); |
|
|
|
const int key = waitKey(30) & 0xff; |
|
if (key == 27) |
|
break; |
|
} |
|
|
|
cout << "-------------------------------------------------------------------" << endl; |
|
|
|
return 0; |
|
}
|
|
|