mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
376 lines
20 KiB
376 lines
20 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef OPENCV_PRECOMP_H |
|
#define OPENCV_PRECOMP_H |
|
|
|
#include "opencv2/core.hpp" |
|
#include "old_ml.hpp" |
|
#include "opencv2/core/core_c.h" |
|
#include "opencv2/core/utility.hpp" |
|
|
|
#include "opencv2/core/private.hpp" |
|
|
|
#include <assert.h> |
|
#include <float.h> |
|
#include <limits.h> |
|
#include <math.h> |
|
#include <stdlib.h> |
|
#include <stdio.h> |
|
#include <string.h> |
|
#include <time.h> |
|
|
|
#define ML_IMPL CV_IMPL |
|
#define __BEGIN__ __CV_BEGIN__ |
|
#define __END__ __CV_END__ |
|
#define EXIT __CV_EXIT__ |
|
|
|
#define CV_MAT_ELEM_FLAG( mat, type, comp, vect, tflag ) \ |
|
(( tflag == CV_ROW_SAMPLE ) \ |
|
? (CV_MAT_ELEM( mat, type, comp, vect )) \ |
|
: (CV_MAT_ELEM( mat, type, vect, comp ))) |
|
|
|
/* Convert matrix to vector */ |
|
#define ICV_MAT2VEC( mat, vdata, vstep, num ) \ |
|
if( MIN( (mat).rows, (mat).cols ) != 1 ) \ |
|
CV_ERROR( CV_StsBadArg, "" ); \ |
|
(vdata) = ((mat).data.ptr); \ |
|
if( (mat).rows == 1 ) \ |
|
{ \ |
|
(vstep) = CV_ELEM_SIZE( (mat).type ); \ |
|
(num) = (mat).cols; \ |
|
} \ |
|
else \ |
|
{ \ |
|
(vstep) = (mat).step; \ |
|
(num) = (mat).rows; \ |
|
} |
|
|
|
/* get raw data */ |
|
#define ICV_RAWDATA( mat, flags, rdata, sstep, cstep, m, n ) \ |
|
(rdata) = (mat).data.ptr; \ |
|
if( CV_IS_ROW_SAMPLE( flags ) ) \ |
|
{ \ |
|
(sstep) = (mat).step; \ |
|
(cstep) = CV_ELEM_SIZE( (mat).type ); \ |
|
(m) = (mat).rows; \ |
|
(n) = (mat).cols; \ |
|
} \ |
|
else \ |
|
{ \ |
|
(cstep) = (mat).step; \ |
|
(sstep) = CV_ELEM_SIZE( (mat).type ); \ |
|
(n) = (mat).rows; \ |
|
(m) = (mat).cols; \ |
|
} |
|
|
|
#define ICV_IS_MAT_OF_TYPE( mat, mat_type) \ |
|
(CV_IS_MAT( mat ) && CV_MAT_TYPE( mat->type ) == (mat_type) && \ |
|
(mat)->cols > 0 && (mat)->rows > 0) |
|
|
|
/* |
|
uchar* data; int sstep, cstep; - trainData->data |
|
uchar* classes; int clstep; int ncl;- trainClasses |
|
uchar* tmask; int tmstep; int ntm; - typeMask |
|
uchar* missed;int msstep, mcstep; -missedMeasurements... |
|
int mm, mn; == m,n == size,dim |
|
uchar* sidx;int sistep; - sampleIdx |
|
uchar* cidx;int cistep; - compIdx |
|
int k, l; == n,m == dim,size (length of cidx, sidx) |
|
int m, n; == size,dim |
|
*/ |
|
#define ICV_DECLARE_TRAIN_ARGS() \ |
|
uchar* data; \ |
|
int sstep, cstep; \ |
|
uchar* classes; \ |
|
int clstep; \ |
|
int ncl; \ |
|
uchar* tmask; \ |
|
int tmstep; \ |
|
int ntm; \ |
|
uchar* missed; \ |
|
int msstep, mcstep; \ |
|
int mm, mn; \ |
|
uchar* sidx; \ |
|
int sistep; \ |
|
uchar* cidx; \ |
|
int cistep; \ |
|
int k, l; \ |
|
int m, n; \ |
|
\ |
|
data = classes = tmask = missed = sidx = cidx = NULL; \ |
|
sstep = cstep = clstep = ncl = tmstep = ntm = msstep = mcstep = mm = mn = 0; \ |
|
sistep = cistep = k = l = m = n = 0; |
|
|
|
#define ICV_TRAIN_DATA_REQUIRED( param, flags ) \ |
|
if( !ICV_IS_MAT_OF_TYPE( (param), CV_32FC1 ) ) \ |
|
{ \ |
|
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \ |
|
} \ |
|
else \ |
|
{ \ |
|
ICV_RAWDATA( *(param), (flags), data, sstep, cstep, m, n ); \ |
|
k = n; \ |
|
l = m; \ |
|
} |
|
|
|
#define ICV_TRAIN_CLASSES_REQUIRED( param ) \ |
|
if( !ICV_IS_MAT_OF_TYPE( (param), CV_32FC1 ) ) \ |
|
{ \ |
|
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \ |
|
} \ |
|
else \ |
|
{ \ |
|
ICV_MAT2VEC( *(param), classes, clstep, ncl ); \ |
|
if( m != ncl ) \ |
|
{ \ |
|
CV_ERROR( CV_StsBadArg, "Unmatched sizes" ); \ |
|
} \ |
|
} |
|
|
|
#define ICV_ARG_NULL( param ) \ |
|
if( (param) != NULL ) \ |
|
{ \ |
|
CV_ERROR( CV_StsBadArg, #param " parameter must be NULL" ); \ |
|
} |
|
|
|
#define ICV_MISSED_MEASUREMENTS_OPTIONAL( param, flags ) \ |
|
if( param ) \ |
|
{ \ |
|
if( !ICV_IS_MAT_OF_TYPE( param, CV_8UC1 ) ) \ |
|
{ \ |
|
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \ |
|
} \ |
|
else \ |
|
{ \ |
|
ICV_RAWDATA( *(param), (flags), missed, msstep, mcstep, mm, mn ); \ |
|
if( mm != m || mn != n ) \ |
|
{ \ |
|
CV_ERROR( CV_StsBadArg, "Unmatched sizes" ); \ |
|
} \ |
|
} \ |
|
} |
|
|
|
#define ICV_COMP_IDX_OPTIONAL( param ) \ |
|
if( param ) \ |
|
{ \ |
|
if( !ICV_IS_MAT_OF_TYPE( param, CV_32SC1 ) ) \ |
|
{ \ |
|
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \ |
|
} \ |
|
else \ |
|
{ \ |
|
ICV_MAT2VEC( *(param), cidx, cistep, k ); \ |
|
if( k > n ) \ |
|
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \ |
|
} \ |
|
} |
|
|
|
#define ICV_SAMPLE_IDX_OPTIONAL( param ) \ |
|
if( param ) \ |
|
{ \ |
|
if( !ICV_IS_MAT_OF_TYPE( param, CV_32SC1 ) ) \ |
|
{ \ |
|
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \ |
|
} \ |
|
else \ |
|
{ \ |
|
ICV_MAT2VEC( *sampleIdx, sidx, sistep, l ); \ |
|
if( l > m ) \ |
|
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \ |
|
} \ |
|
} |
|
|
|
/****************************************************************************************/ |
|
#define ICV_CONVERT_FLOAT_ARRAY_TO_MATRICE( array, matrice ) \ |
|
{ \ |
|
CvMat a, b; \ |
|
int dims = (matrice)->cols; \ |
|
int nsamples = (matrice)->rows; \ |
|
int type = CV_MAT_TYPE((matrice)->type); \ |
|
int i, offset = dims; \ |
|
\ |
|
CV_ASSERT( type == CV_32FC1 || type == CV_64FC1 ); \ |
|
offset *= ((type == CV_32FC1) ? sizeof(float) : sizeof(double));\ |
|
\ |
|
b = cvMat( 1, dims, CV_32FC1 ); \ |
|
cvGetRow( matrice, &a, 0 ); \ |
|
for( i = 0; i < nsamples; i++, a.data.ptr += offset ) \ |
|
{ \ |
|
b.data.fl = (float*)array[i]; \ |
|
CV_CALL( cvConvert( &b, &a ) ); \ |
|
} \ |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Auxiliary functions declarations * |
|
\****************************************************************************************/ |
|
|
|
/* Generates a set of classes centers in quantity <num_of_clusters> that are generated as |
|
uniform random vectors in parallelepiped, where <data> is concentrated. Vectors in |
|
<data> should have horizontal orientation. If <centers> != NULL, the function doesn't |
|
allocate any memory and stores generated centers in <centers>, returns <centers>. |
|
If <centers> == NULL, the function allocates memory and creates the matrice. Centers |
|
are supposed to be oriented horizontally. */ |
|
CvMat* icvGenerateRandomClusterCenters( int seed, |
|
const CvMat* data, |
|
int num_of_clusters, |
|
CvMat* centers CV_DEFAULT(0)); |
|
|
|
/* Fills the <labels> using <probs> by choosing the maximal probability. Outliers are |
|
fixed by <oulier_tresh> and have cluster label (-1). Function also controls that there |
|
weren't "empty" clusters by filling empty clusters with the maximal probability vector. |
|
If probs_sums != NULL, filles it with the sums of probabilities for each sample (it is |
|
useful for normalizing probabilities' matrice of FCM) */ |
|
void icvFindClusterLabels( const CvMat* probs, float outlier_thresh, float r, |
|
const CvMat* labels ); |
|
|
|
typedef struct CvSparseVecElem32f |
|
{ |
|
int idx; |
|
float val; |
|
} |
|
CvSparseVecElem32f; |
|
|
|
/* Prepare training data and related parameters */ |
|
#define CV_TRAIN_STATMODEL_DEFRAGMENT_TRAIN_DATA 1 |
|
#define CV_TRAIN_STATMODEL_SAMPLES_AS_ROWS 2 |
|
#define CV_TRAIN_STATMODEL_SAMPLES_AS_COLUMNS 4 |
|
#define CV_TRAIN_STATMODEL_CATEGORICAL_RESPONSE 8 |
|
#define CV_TRAIN_STATMODEL_ORDERED_RESPONSE 16 |
|
#define CV_TRAIN_STATMODEL_RESPONSES_ON_OUTPUT 32 |
|
#define CV_TRAIN_STATMODEL_ALWAYS_COPY_TRAIN_DATA 64 |
|
#define CV_TRAIN_STATMODEL_SPARSE_AS_SPARSE 128 |
|
|
|
int |
|
cvPrepareTrainData( const char* /*funcname*/, |
|
const CvMat* train_data, int tflag, |
|
const CvMat* responses, int response_type, |
|
const CvMat* var_idx, |
|
const CvMat* sample_idx, |
|
bool always_copy_data, |
|
const float*** out_train_samples, |
|
int* _sample_count, |
|
int* _var_count, |
|
int* _var_all, |
|
CvMat** out_responses, |
|
CvMat** out_response_map, |
|
CvMat** out_var_idx, |
|
CvMat** out_sample_idx=0 ); |
|
|
|
void |
|
cvSortSamplesByClasses( const float** samples, const CvMat* classes, |
|
int* class_ranges, const uchar** mask CV_DEFAULT(0) ); |
|
|
|
void |
|
cvCombineResponseMaps (CvMat* _responses, |
|
const CvMat* old_response_map, |
|
CvMat* new_response_map, |
|
CvMat** out_response_map); |
|
|
|
void |
|
cvPreparePredictData( const CvArr* sample, int dims_all, const CvMat* comp_idx, |
|
int class_count, const CvMat* prob, float** row_sample, |
|
int as_sparse CV_DEFAULT(0) ); |
|
|
|
/* copies clustering [or batch "predict"] results |
|
(labels and/or centers and/or probs) back to the output arrays */ |
|
void |
|
cvWritebackLabels( const CvMat* labels, CvMat* dst_labels, |
|
const CvMat* centers, CvMat* dst_centers, |
|
const CvMat* probs, CvMat* dst_probs, |
|
const CvMat* sample_idx, int samples_all, |
|
const CvMat* comp_idx, int dims_all ); |
|
#define cvWritebackResponses cvWritebackLabels |
|
|
|
#define XML_FIELD_NAME "_name" |
|
CvFileNode* icvFileNodeGetChild(CvFileNode* father, const char* name); |
|
CvFileNode* icvFileNodeGetChildArrayElem(CvFileNode* father, const char* name,int index); |
|
CvFileNode* icvFileNodeGetNext(CvFileNode* n, const char* name); |
|
|
|
|
|
void cvCheckTrainData( const CvMat* train_data, int tflag, |
|
const CvMat* missing_mask, |
|
int* var_all, int* sample_all ); |
|
|
|
CvMat* cvPreprocessIndexArray( const CvMat* idx_arr, int data_arr_size, bool check_for_duplicates=false ); |
|
|
|
CvMat* cvPreprocessVarType( const CvMat* type_mask, const CvMat* var_idx, |
|
int var_all, int* response_type ); |
|
|
|
CvMat* cvPreprocessOrderedResponses( const CvMat* responses, |
|
const CvMat* sample_idx, int sample_all ); |
|
|
|
CvMat* cvPreprocessCategoricalResponses( const CvMat* responses, |
|
const CvMat* sample_idx, int sample_all, |
|
CvMat** out_response_map, CvMat** class_counts=0 ); |
|
|
|
const float** cvGetTrainSamples( const CvMat* train_data, int tflag, |
|
const CvMat* var_idx, const CvMat* sample_idx, |
|
int* _var_count, int* _sample_count, |
|
bool always_copy_data=false ); |
|
|
|
namespace cv |
|
{ |
|
struct DTreeBestSplitFinder |
|
{ |
|
DTreeBestSplitFinder(){ splitSize = 0, tree = 0; node = 0; } |
|
DTreeBestSplitFinder( CvDTree* _tree, CvDTreeNode* _node); |
|
DTreeBestSplitFinder( const DTreeBestSplitFinder& finder, Split ); |
|
virtual ~DTreeBestSplitFinder() {} |
|
virtual void operator()(const BlockedRange& range); |
|
void join( DTreeBestSplitFinder& rhs ); |
|
Ptr<CvDTreeSplit> bestSplit; |
|
Ptr<CvDTreeSplit> split; |
|
int splitSize; |
|
CvDTree* tree; |
|
CvDTreeNode* node; |
|
}; |
|
|
|
struct ForestTreeBestSplitFinder : DTreeBestSplitFinder |
|
{ |
|
ForestTreeBestSplitFinder() : DTreeBestSplitFinder() {} |
|
ForestTreeBestSplitFinder( CvForestTree* _tree, CvDTreeNode* _node ); |
|
ForestTreeBestSplitFinder( const ForestTreeBestSplitFinder& finder, Split ); |
|
virtual void operator()(const BlockedRange& range); |
|
}; |
|
} |
|
|
|
#endif /* __ML_H__ */
|
|
|