mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
634 lines
20 KiB
634 lines
20 KiB
/*********************************************************************** |
|
* Software License Agreement (BSD License) |
|
* |
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. |
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. |
|
* |
|
* THE BSD LICENSE |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
*************************************************************************/ |
|
|
|
#ifndef OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_ |
|
#define OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_ |
|
|
|
#include <algorithm> |
|
#include <map> |
|
#include <cassert> |
|
#include <cstring> |
|
|
|
#include "general.h" |
|
#include "nn_index.h" |
|
#include "matrix.h" |
|
#include "result_set.h" |
|
#include "heap.h" |
|
#include "allocator.h" |
|
#include "random.h" |
|
#include "saving.h" |
|
|
|
namespace cvflann |
|
{ |
|
|
|
struct KDTreeSingleIndexParams : public IndexParams |
|
{ |
|
KDTreeSingleIndexParams(int leaf_max_size = 10, bool reorder = true, int dim = -1) |
|
{ |
|
(*this)["algorithm"] = FLANN_INDEX_KDTREE_SINGLE; |
|
(*this)["leaf_max_size"] = leaf_max_size; |
|
(*this)["reorder"] = reorder; |
|
(*this)["dim"] = dim; |
|
} |
|
}; |
|
|
|
|
|
/** |
|
* Randomized kd-tree index |
|
* |
|
* Contains the k-d trees and other information for indexing a set of points |
|
* for nearest-neighbor matching. |
|
*/ |
|
template <typename Distance> |
|
class KDTreeSingleIndex : public NNIndex<Distance> |
|
{ |
|
public: |
|
typedef typename Distance::ElementType ElementType; |
|
typedef typename Distance::ResultType DistanceType; |
|
|
|
|
|
/** |
|
* KDTree constructor |
|
* |
|
* Params: |
|
* inputData = dataset with the input features |
|
* params = parameters passed to the kdtree algorithm |
|
*/ |
|
KDTreeSingleIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeSingleIndexParams(), |
|
Distance d = Distance() ) : |
|
dataset_(inputData), index_params_(params), distance_(d) |
|
{ |
|
size_ = dataset_.rows; |
|
dim_ = dataset_.cols; |
|
int dim_param = get_param(params,"dim",-1); |
|
if (dim_param>0) dim_ = dim_param; |
|
leaf_max_size_ = get_param(params,"leaf_max_size",10); |
|
reorder_ = get_param(params,"reorder",true); |
|
|
|
// Create a permutable array of indices to the input vectors. |
|
vind_.resize(size_); |
|
for (size_t i = 0; i < size_; i++) { |
|
vind_[i] = i; |
|
} |
|
} |
|
|
|
KDTreeSingleIndex(const KDTreeSingleIndex&); |
|
KDTreeSingleIndex& operator=(const KDTreeSingleIndex&); |
|
|
|
/** |
|
* Standard destructor |
|
*/ |
|
~KDTreeSingleIndex() |
|
{ |
|
if (reorder_) delete[] data_.data; |
|
} |
|
|
|
/** |
|
* Builds the index |
|
*/ |
|
void buildIndex() |
|
{ |
|
computeBoundingBox(root_bbox_); |
|
root_node_ = divideTree(0, size_, root_bbox_ ); // construct the tree |
|
|
|
if (reorder_) { |
|
delete[] data_.data; |
|
data_ = cvflann::Matrix<ElementType>(new ElementType[size_*dim_], size_, dim_); |
|
for (size_t i=0; i<size_; ++i) { |
|
for (size_t j=0; j<dim_; ++j) { |
|
data_[i][j] = dataset_[vind_[i]][j]; |
|
} |
|
} |
|
} |
|
else { |
|
data_ = dataset_; |
|
} |
|
} |
|
|
|
flann_algorithm_t getType() const |
|
{ |
|
return FLANN_INDEX_KDTREE_SINGLE; |
|
} |
|
|
|
|
|
void saveIndex(FILE* stream) |
|
{ |
|
save_value(stream, size_); |
|
save_value(stream, dim_); |
|
save_value(stream, root_bbox_); |
|
save_value(stream, reorder_); |
|
save_value(stream, leaf_max_size_); |
|
save_value(stream, vind_); |
|
if (reorder_) { |
|
save_value(stream, data_); |
|
} |
|
save_tree(stream, root_node_); |
|
} |
|
|
|
|
|
void loadIndex(FILE* stream) |
|
{ |
|
load_value(stream, size_); |
|
load_value(stream, dim_); |
|
load_value(stream, root_bbox_); |
|
load_value(stream, reorder_); |
|
load_value(stream, leaf_max_size_); |
|
load_value(stream, vind_); |
|
if (reorder_) { |
|
load_value(stream, data_); |
|
} |
|
else { |
|
data_ = dataset_; |
|
} |
|
load_tree(stream, root_node_); |
|
|
|
|
|
index_params_["algorithm"] = getType(); |
|
index_params_["leaf_max_size"] = leaf_max_size_; |
|
index_params_["reorder"] = reorder_; |
|
} |
|
|
|
/** |
|
* Returns size of index. |
|
*/ |
|
size_t size() const |
|
{ |
|
return size_; |
|
} |
|
|
|
/** |
|
* Returns the length of an index feature. |
|
*/ |
|
size_t veclen() const |
|
{ |
|
return dim_; |
|
} |
|
|
|
/** |
|
* Computes the inde memory usage |
|
* Returns: memory used by the index |
|
*/ |
|
int usedMemory() const |
|
{ |
|
return pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int); // pool memory and vind array memory |
|
} |
|
|
|
|
|
/** |
|
* \brief Perform k-nearest neighbor search |
|
* \param[in] queries The query points for which to find the nearest neighbors |
|
* \param[out] indices The indices of the nearest neighbors found |
|
* \param[out] dists Distances to the nearest neighbors found |
|
* \param[in] knn Number of nearest neighbors to return |
|
* \param[in] params Search parameters |
|
*/ |
|
void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params) |
|
{ |
|
assert(queries.cols == veclen()); |
|
assert(indices.rows >= queries.rows); |
|
assert(dists.rows >= queries.rows); |
|
assert(int(indices.cols) >= knn); |
|
assert(int(dists.cols) >= knn); |
|
|
|
KNNSimpleResultSet<DistanceType> resultSet(knn); |
|
for (size_t i = 0; i < queries.rows; i++) { |
|
resultSet.init(indices[i], dists[i]); |
|
findNeighbors(resultSet, queries[i], params); |
|
} |
|
} |
|
|
|
IndexParams getParameters() const |
|
{ |
|
return index_params_; |
|
} |
|
|
|
/** |
|
* Find set of nearest neighbors to vec. Their indices are stored inside |
|
* the result object. |
|
* |
|
* Params: |
|
* result = the result object in which the indices of the nearest-neighbors are stored |
|
* vec = the vector for which to search the nearest neighbors |
|
* maxCheck = the maximum number of restarts (in a best-bin-first manner) |
|
*/ |
|
void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) |
|
{ |
|
float epsError = 1+get_param(searchParams,"eps",0.0f); |
|
|
|
std::vector<DistanceType> dists(dim_,0); |
|
DistanceType distsq = computeInitialDistances(vec, dists); |
|
searchLevel(result, vec, root_node_, distsq, dists, epsError); |
|
} |
|
|
|
private: |
|
|
|
|
|
/*--------------------- Internal Data Structures --------------------------*/ |
|
struct Node |
|
{ |
|
/** |
|
* Indices of points in leaf node |
|
*/ |
|
int left, right; |
|
/** |
|
* Dimension used for subdivision. |
|
*/ |
|
int divfeat; |
|
/** |
|
* The values used for subdivision. |
|
*/ |
|
DistanceType divlow, divhigh; |
|
/** |
|
* The child nodes. |
|
*/ |
|
Node* child1, * child2; |
|
}; |
|
typedef Node* NodePtr; |
|
|
|
|
|
struct Interval |
|
{ |
|
DistanceType low, high; |
|
}; |
|
|
|
typedef std::vector<Interval> BoundingBox; |
|
|
|
typedef BranchStruct<NodePtr, DistanceType> BranchSt; |
|
typedef BranchSt* Branch; |
|
|
|
|
|
|
|
|
|
void save_tree(FILE* stream, NodePtr tree) |
|
{ |
|
save_value(stream, *tree); |
|
if (tree->child1!=NULL) { |
|
save_tree(stream, tree->child1); |
|
} |
|
if (tree->child2!=NULL) { |
|
save_tree(stream, tree->child2); |
|
} |
|
} |
|
|
|
|
|
void load_tree(FILE* stream, NodePtr& tree) |
|
{ |
|
tree = pool_.allocate<Node>(); |
|
load_value(stream, *tree); |
|
if (tree->child1!=NULL) { |
|
load_tree(stream, tree->child1); |
|
} |
|
if (tree->child2!=NULL) { |
|
load_tree(stream, tree->child2); |
|
} |
|
} |
|
|
|
|
|
void computeBoundingBox(BoundingBox& bbox) |
|
{ |
|
bbox.resize(dim_); |
|
for (size_t i=0; i<dim_; ++i) { |
|
bbox[i].low = (DistanceType)dataset_[0][i]; |
|
bbox[i].high = (DistanceType)dataset_[0][i]; |
|
} |
|
for (size_t k=1; k<dataset_.rows; ++k) { |
|
for (size_t i=0; i<dim_; ++i) { |
|
if (dataset_[k][i]<bbox[i].low) bbox[i].low = (DistanceType)dataset_[k][i]; |
|
if (dataset_[k][i]>bbox[i].high) bbox[i].high = (DistanceType)dataset_[k][i]; |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Create a tree node that subdivides the list of vecs from vind[first] |
|
* to vind[last]. The routine is called recursively on each sublist. |
|
* Place a pointer to this new tree node in the location pTree. |
|
* |
|
* Params: pTree = the new node to create |
|
* first = index of the first vector |
|
* last = index of the last vector |
|
*/ |
|
NodePtr divideTree(int left, int right, BoundingBox& bbox) |
|
{ |
|
NodePtr node = pool_.allocate<Node>(); // allocate memory |
|
|
|
/* If too few exemplars remain, then make this a leaf node. */ |
|
if ( (right-left) <= leaf_max_size_) { |
|
node->child1 = node->child2 = NULL; /* Mark as leaf node. */ |
|
node->left = left; |
|
node->right = right; |
|
|
|
// compute bounding-box of leaf points |
|
for (size_t i=0; i<dim_; ++i) { |
|
bbox[i].low = (DistanceType)dataset_[vind_[left]][i]; |
|
bbox[i].high = (DistanceType)dataset_[vind_[left]][i]; |
|
} |
|
for (int k=left+1; k<right; ++k) { |
|
for (size_t i=0; i<dim_; ++i) { |
|
if (bbox[i].low>dataset_[vind_[k]][i]) bbox[i].low=(DistanceType)dataset_[vind_[k]][i]; |
|
if (bbox[i].high<dataset_[vind_[k]][i]) bbox[i].high=(DistanceType)dataset_[vind_[k]][i]; |
|
} |
|
} |
|
} |
|
else { |
|
int idx; |
|
int cutfeat; |
|
DistanceType cutval; |
|
middleSplit_(&vind_[0]+left, right-left, idx, cutfeat, cutval, bbox); |
|
|
|
node->divfeat = cutfeat; |
|
|
|
BoundingBox left_bbox(bbox); |
|
left_bbox[cutfeat].high = cutval; |
|
node->child1 = divideTree(left, left+idx, left_bbox); |
|
|
|
BoundingBox right_bbox(bbox); |
|
right_bbox[cutfeat].low = cutval; |
|
node->child2 = divideTree(left+idx, right, right_bbox); |
|
|
|
node->divlow = left_bbox[cutfeat].high; |
|
node->divhigh = right_bbox[cutfeat].low; |
|
|
|
for (size_t i=0; i<dim_; ++i) { |
|
bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low); |
|
bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high); |
|
} |
|
} |
|
|
|
return node; |
|
} |
|
|
|
void computeMinMax(int* ind, int count, int dim, ElementType& min_elem, ElementType& max_elem) |
|
{ |
|
min_elem = dataset_[ind[0]][dim]; |
|
max_elem = dataset_[ind[0]][dim]; |
|
for (int i=1; i<count; ++i) { |
|
ElementType val = dataset_[ind[i]][dim]; |
|
if (val<min_elem) min_elem = val; |
|
if (val>max_elem) max_elem = val; |
|
} |
|
} |
|
|
|
void middleSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox) |
|
{ |
|
// find the largest span from the approximate bounding box |
|
ElementType max_span = bbox[0].high-bbox[0].low; |
|
cutfeat = 0; |
|
cutval = (bbox[0].high+bbox[0].low)/2; |
|
for (size_t i=1; i<dim_; ++i) { |
|
ElementType span = bbox[i].low-bbox[i].low; |
|
if (span>max_span) { |
|
max_span = span; |
|
cutfeat = i; |
|
cutval = (bbox[i].high+bbox[i].low)/2; |
|
} |
|
} |
|
|
|
// compute exact span on the found dimension |
|
ElementType min_elem, max_elem; |
|
computeMinMax(ind, count, cutfeat, min_elem, max_elem); |
|
cutval = (min_elem+max_elem)/2; |
|
max_span = max_elem - min_elem; |
|
|
|
// check if a dimension of a largest span exists |
|
size_t k = cutfeat; |
|
for (size_t i=0; i<dim_; ++i) { |
|
if (i==k) continue; |
|
ElementType span = bbox[i].high-bbox[i].low; |
|
if (span>max_span) { |
|
computeMinMax(ind, count, i, min_elem, max_elem); |
|
span = max_elem - min_elem; |
|
if (span>max_span) { |
|
max_span = span; |
|
cutfeat = i; |
|
cutval = (min_elem+max_elem)/2; |
|
} |
|
} |
|
} |
|
int lim1, lim2; |
|
planeSplit(ind, count, cutfeat, cutval, lim1, lim2); |
|
|
|
if (lim1>count/2) index = lim1; |
|
else if (lim2<count/2) index = lim2; |
|
else index = count/2; |
|
} |
|
|
|
|
|
void middleSplit_(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox) |
|
{ |
|
const float EPS=0.00001f; |
|
DistanceType max_span = bbox[0].high-bbox[0].low; |
|
for (size_t i=1; i<dim_; ++i) { |
|
DistanceType span = bbox[i].high-bbox[i].low; |
|
if (span>max_span) { |
|
max_span = span; |
|
} |
|
} |
|
DistanceType max_spread = -1; |
|
cutfeat = 0; |
|
for (size_t i=0; i<dim_; ++i) { |
|
DistanceType span = bbox[i].high-bbox[i].low; |
|
if (span>(DistanceType)((1-EPS)*max_span)) { |
|
ElementType min_elem, max_elem; |
|
computeMinMax(ind, count, cutfeat, min_elem, max_elem); |
|
DistanceType spread = (DistanceType)(max_elem-min_elem); |
|
if (spread>max_spread) { |
|
cutfeat = i; |
|
max_spread = spread; |
|
} |
|
} |
|
} |
|
// split in the middle |
|
DistanceType split_val = (bbox[cutfeat].low+bbox[cutfeat].high)/2; |
|
ElementType min_elem, max_elem; |
|
computeMinMax(ind, count, cutfeat, min_elem, max_elem); |
|
|
|
if (split_val<min_elem) cutval = (DistanceType)min_elem; |
|
else if (split_val>max_elem) cutval = (DistanceType)max_elem; |
|
else cutval = split_val; |
|
|
|
int lim1, lim2; |
|
planeSplit(ind, count, cutfeat, cutval, lim1, lim2); |
|
|
|
if (lim1>count/2) index = lim1; |
|
else if (lim2<count/2) index = lim2; |
|
else index = count/2; |
|
} |
|
|
|
|
|
/** |
|
* Subdivide the list of points by a plane perpendicular on axe corresponding |
|
* to the 'cutfeat' dimension at 'cutval' position. |
|
* |
|
* On return: |
|
* dataset[ind[0..lim1-1]][cutfeat]<cutval |
|
* dataset[ind[lim1..lim2-1]][cutfeat]==cutval |
|
* dataset[ind[lim2..count]][cutfeat]>cutval |
|
*/ |
|
void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2) |
|
{ |
|
/* Move vector indices for left subtree to front of list. */ |
|
int left = 0; |
|
int right = count-1; |
|
for (;; ) { |
|
while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left; |
|
while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right; |
|
if (left>right) break; |
|
std::swap(ind[left], ind[right]); ++left; --right; |
|
} |
|
/* If either list is empty, it means that all remaining features |
|
* are identical. Split in the middle to maintain a balanced tree. |
|
*/ |
|
lim1 = left; |
|
right = count-1; |
|
for (;; ) { |
|
while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left; |
|
while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right; |
|
if (left>right) break; |
|
std::swap(ind[left], ind[right]); ++left; --right; |
|
} |
|
lim2 = left; |
|
} |
|
|
|
DistanceType computeInitialDistances(const ElementType* vec, std::vector<DistanceType>& dists) |
|
{ |
|
DistanceType distsq = 0.0; |
|
|
|
for (size_t i = 0; i < dim_; ++i) { |
|
if (vec[i] < root_bbox_[i].low) { |
|
dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].low, i); |
|
distsq += dists[i]; |
|
} |
|
if (vec[i] > root_bbox_[i].high) { |
|
dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].high, i); |
|
distsq += dists[i]; |
|
} |
|
} |
|
|
|
return distsq; |
|
} |
|
|
|
/** |
|
* Performs an exact search in the tree starting from a node. |
|
*/ |
|
void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindistsq, |
|
std::vector<DistanceType>& dists, const float epsError) |
|
{ |
|
/* If this is a leaf node, then do check and return. */ |
|
if ((node->child1 == NULL)&&(node->child2 == NULL)) { |
|
DistanceType worst_dist = result_set.worstDist(); |
|
for (int i=node->left; i<node->right; ++i) { |
|
int index = reorder_ ? i : vind_[i]; |
|
DistanceType dist = distance_(vec, data_[index], dim_, worst_dist); |
|
if (dist<worst_dist) { |
|
result_set.addPoint(dist,vind_[i]); |
|
} |
|
} |
|
return; |
|
} |
|
|
|
/* Which child branch should be taken first? */ |
|
int idx = node->divfeat; |
|
ElementType val = vec[idx]; |
|
DistanceType diff1 = val - node->divlow; |
|
DistanceType diff2 = val - node->divhigh; |
|
|
|
NodePtr bestChild; |
|
NodePtr otherChild; |
|
DistanceType cut_dist; |
|
if ((diff1+diff2)<0) { |
|
bestChild = node->child1; |
|
otherChild = node->child2; |
|
cut_dist = distance_.accum_dist(val, node->divhigh, idx); |
|
} |
|
else { |
|
bestChild = node->child2; |
|
otherChild = node->child1; |
|
cut_dist = distance_.accum_dist( val, node->divlow, idx); |
|
} |
|
|
|
/* Call recursively to search next level down. */ |
|
searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError); |
|
|
|
DistanceType dst = dists[idx]; |
|
mindistsq = mindistsq + cut_dist - dst; |
|
dists[idx] = cut_dist; |
|
if (mindistsq*epsError<=result_set.worstDist()) { |
|
searchLevel(result_set, vec, otherChild, mindistsq, dists, epsError); |
|
} |
|
dists[idx] = dst; |
|
} |
|
|
|
private: |
|
|
|
/** |
|
* The dataset used by this index |
|
*/ |
|
const Matrix<ElementType> dataset_; |
|
|
|
IndexParams index_params_; |
|
|
|
int leaf_max_size_; |
|
bool reorder_; |
|
|
|
|
|
/** |
|
* Array of indices to vectors in the dataset. |
|
*/ |
|
std::vector<int> vind_; |
|
|
|
Matrix<ElementType> data_; |
|
|
|
size_t size_; |
|
size_t dim_; |
|
|
|
/** |
|
* Array of k-d trees used to find neighbours. |
|
*/ |
|
NodePtr root_node_; |
|
|
|
BoundingBox root_bbox_; |
|
|
|
/** |
|
* Pooled memory allocator. |
|
* |
|
* Using a pooled memory allocator is more efficient |
|
* than allocating memory directly when there is a large |
|
* number small of memory allocations. |
|
*/ |
|
PooledAllocator pool_; |
|
|
|
Distance distance_; |
|
}; // class KDTree |
|
|
|
} |
|
|
|
#endif //OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
|
|
|