Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

395 lines
14 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Niko Li, newlife20080214@gmail.com
// Jia Haipeng, jiahaipeng95@gmail.com
// Shengen Yan, yanshengen@gmail.com
// Jiang Liyuan, lyuan001.good@163.com
// Rock Li, Rock.Li@amd.com
// Wu Zailong, bullet@yeah.net
// Xu Pang, pangxu010@163.com
// Sen Liu, swjtuls1987@126.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../test_precomp.hpp"
#include "opencv2/ts/ocl_test.hpp"
#ifdef HAVE_OPENCL
namespace cvtest {
namespace ocl {
enum
{
noType = -1
};
/////////////////////////////////////////////////////////////////////////////////////////////////
// warpAffine & warpPerspective
PARAM_TEST_CASE(WarpTestBase, MatType, Interpolation, bool, bool)
{
int type, interpolation;
Size dsize;
bool useRoi, mapInverse;
int depth;
TEST_DECLARE_INPUT_PARAMETER(src);
TEST_DECLARE_OUTPUT_PARAMETER(dst);
virtual void SetUp()
{
type = GET_PARAM(0);
interpolation = GET_PARAM(1);
mapInverse = GET_PARAM(2);
useRoi = GET_PARAM(3);
depth = CV_MAT_DEPTH(type);
if (mapInverse)
interpolation |= WARP_INVERSE_MAP;
}
void random_roi()
{
dsize = randomSize(1, MAX_VALUE);
Size roiSize = randomSize(1, MAX_VALUE);
Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
randomSubMat(src, src_roi, roiSize, srcBorder, type, -MAX_VALUE, MAX_VALUE);
Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
randomSubMat(dst, dst_roi, dsize, dstBorder, type, -MAX_VALUE, MAX_VALUE);
UMAT_UPLOAD_INPUT_PARAMETER(src);
UMAT_UPLOAD_OUTPUT_PARAMETER(dst);
}
void Near(double threshold = 0.0)
{
if (depth < CV_32F)
EXPECT_MAT_N_DIFF(dst_roi, udst_roi, cvRound(dst_roi.total()*threshold));
else
OCL_EXPECT_MATS_NEAR_RELATIVE(dst, threshold);
}
};
/////warpAffine
typedef WarpTestBase WarpAffine;
OCL_TEST_P(WarpAffine, Mat)
{
for (int j = 0; j < test_loop_times; j++)
{
double eps = depth < CV_32F ? 0.04 : 0.06;
random_roi();
Mat M = getRotationMatrix2D(Point2f(src_roi.cols / 2.0f, src_roi.rows / 2.0f),
rng.uniform(-180.f, 180.f), rng.uniform(0.4f, 2.0f));
OCL_OFF(cv::warpAffine(src_roi, dst_roi, M, dsize, interpolation));
OCL_ON(cv::warpAffine(usrc_roi, udst_roi, M, dsize, interpolation));
Near(eps);
}
}
//// warpPerspective
typedef WarpTestBase WarpPerspective;
OCL_TEST_P(WarpPerspective, Mat)
{
for (int j = 0; j < test_loop_times; j++)
{
double eps = depth < CV_32F ? 0.03 : 0.06;
random_roi();
float cols = static_cast<float>(src_roi.cols), rows = static_cast<float>(src_roi.rows);
float cols2 = cols / 2.0f, rows2 = rows / 2.0f;
Point2f sp[] = { Point2f(0.0f, 0.0f), Point2f(cols, 0.0f), Point2f(0.0f, rows), Point2f(cols, rows) };
Point2f dp[] = { Point2f(rng.uniform(0.0f, cols2), rng.uniform(0.0f, rows2)),
Point2f(rng.uniform(cols2, cols), rng.uniform(0.0f, rows2)),
Point2f(rng.uniform(0.0f, cols2), rng.uniform(rows2, rows)),
Point2f(rng.uniform(cols2, cols), rng.uniform(rows2, rows)) };
Mat M = getPerspectiveTransform(sp, dp);
OCL_OFF(cv::warpPerspective(src_roi, dst_roi, M, dsize, interpolation));
OCL_ON(cv::warpPerspective(usrc_roi, udst_roi, M, dsize, interpolation));
Near(eps);
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////
//// resize
PARAM_TEST_CASE(Resize, MatType, double, double, Interpolation, bool, int)
{
int type, interpolation;
int widthMultiple;
double fx, fy;
bool useRoi;
TEST_DECLARE_INPUT_PARAMETER(src);
TEST_DECLARE_OUTPUT_PARAMETER(dst);
virtual void SetUp()
{
type = GET_PARAM(0);
fx = GET_PARAM(1);
fy = GET_PARAM(2);
interpolation = GET_PARAM(3);
useRoi = GET_PARAM(4);
widthMultiple = GET_PARAM(5);
}
void random_roi()
{
CV_Assert(fx > 0 && fy > 0);
Size srcRoiSize = randomSize(10, MAX_VALUE), dstRoiSize;
// Make sure the width is a multiple of the requested value, and no more
srcRoiSize.width += widthMultiple - 1 - (srcRoiSize.width - 1) % widthMultiple;
dstRoiSize.width = cvRound(srcRoiSize.width * fx);
dstRoiSize.height = cvRound(srcRoiSize.height * fy);
if (dstRoiSize.area() == 0)
{
random_roi();
return;
}
Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
randomSubMat(src, src_roi, srcRoiSize, srcBorder, type, -MAX_VALUE, MAX_VALUE);
Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
randomSubMat(dst, dst_roi, dstRoiSize, dstBorder, type, -MAX_VALUE, MAX_VALUE);
UMAT_UPLOAD_INPUT_PARAMETER(src);
UMAT_UPLOAD_OUTPUT_PARAMETER(dst);
}
void Near(double threshold = 0.0)
{
OCL_EXPECT_MATS_NEAR(dst, threshold);
}
};
OCL_TEST_P(Resize, Mat)
{
for (int j = 0; j < test_loop_times; j++)
{
int depth = CV_MAT_DEPTH(type);
double eps = depth <= CV_32S ? 1 : 5e-2;
random_roi();
OCL_OFF(cv::resize(src_roi, dst_roi, Size(), fx, fy, interpolation));
OCL_ON(cv::resize(usrc_roi, udst_roi, Size(), fx, fy, interpolation));
Near(eps);
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////
// remap
PARAM_TEST_CASE(Remap, MatDepth, Channels, std::pair<MatType, MatType>, BorderType, bool)
{
int srcType, map1Type, map2Type;
int borderType;
bool useRoi;
Scalar val;
TEST_DECLARE_INPUT_PARAMETER(src);
TEST_DECLARE_INPUT_PARAMETER(map1);
TEST_DECLARE_INPUT_PARAMETER(map2);
TEST_DECLARE_OUTPUT_PARAMETER(dst);
virtual void SetUp()
{
srcType = CV_MAKE_TYPE(GET_PARAM(0), GET_PARAM(1));
map1Type = GET_PARAM(2).first;
map2Type = GET_PARAM(2).second;
borderType = GET_PARAM(3);
useRoi = GET_PARAM(4);
}
void random_roi()
{
val = randomScalar(-MAX_VALUE, MAX_VALUE);
Size srcROISize = randomSize(1, MAX_VALUE);
Size dstROISize = randomSize(1, MAX_VALUE);
Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
randomSubMat(src, src_roi, srcROISize, srcBorder, srcType, 5, 256);
Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
randomSubMat(dst, dst_roi, dstROISize, dstBorder, srcType, -MAX_VALUE, MAX_VALUE);
int mapMaxValue = MAX_VALUE << 2;
Border map1Border = randomBorder(0, useRoi ? MAX_VALUE : 0);
randomSubMat(map1, map1_roi, dstROISize, map1Border, map1Type, -mapMaxValue, mapMaxValue);
Border map2Border = randomBorder(0, useRoi ? MAX_VALUE + 1 : 0);
if (map2Type != noType)
{
int mapMinValue = -mapMaxValue;
if (map2Type == CV_16UC1 || map2Type == CV_16SC1)
mapMinValue = 0, mapMaxValue = INTER_TAB_SIZE2;
randomSubMat(map2, map2_roi, dstROISize, map2Border, map2Type, mapMinValue, mapMaxValue);
}
UMAT_UPLOAD_INPUT_PARAMETER(src);
UMAT_UPLOAD_INPUT_PARAMETER(map1);
UMAT_UPLOAD_OUTPUT_PARAMETER(dst);
if (noType != map2Type)
UMAT_UPLOAD_INPUT_PARAMETER(map2);
}
void Near(double threshold = 0.0)
{
OCL_EXPECT_MATS_NEAR(dst, threshold);
}
};
typedef Remap Remap_INTER_NEAREST;
OCL_TEST_P(Remap_INTER_NEAREST, Mat)
{
for (int j = 0; j < test_loop_times; j++)
{
random_roi();
OCL_OFF(cv::remap(src_roi, dst_roi, map1_roi, map2_roi, INTER_NEAREST, borderType, val));
OCL_ON(cv::remap(usrc_roi, udst_roi, umap1_roi, umap2_roi, INTER_NEAREST, borderType, val));
Near(1.0);
}
}
typedef Remap Remap_INTER_LINEAR;
OCL_TEST_P(Remap_INTER_LINEAR, Mat)
{
for (int j = 0; j < test_loop_times; j++)
{
random_roi();
double eps = 2.0;
#ifdef ANDROID
// TODO investigate accuracy
if (cv::ocl::Device::getDefault().isNVidia())
eps = 8.0;
#endif
OCL_OFF(cv::remap(src_roi, dst_roi, map1_roi, map2_roi, INTER_LINEAR, borderType, val));
OCL_ON(cv::remap(usrc_roi, udst_roi, umap1_roi, umap2_roi, INTER_LINEAR, borderType, val));
Near(eps);
}
}
/////////////////////////////////////////////////////////////////////////////////////
OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarp, WarpAffine, Combine(
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4),
Values((Interpolation)INTER_NEAREST, (Interpolation)INTER_LINEAR, (Interpolation)INTER_CUBIC),
Bool(),
Bool()));
OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarp, WarpPerspective, Combine(
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4),
Values((Interpolation)INTER_NEAREST, (Interpolation)INTER_LINEAR, (Interpolation)INTER_CUBIC),
Bool(),
Bool()));
OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarp, Resize, Combine(
Values(CV_8UC1, CV_8UC4, CV_16UC2, CV_32FC1, CV_32FC4),
Values(0.5, 1.5, 2.0, 0.2),
Values(0.5, 1.5, 2.0, 0.2),
Values((Interpolation)INTER_NEAREST, (Interpolation)INTER_LINEAR),
Bool(),
Values(1, 16)));
OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarpResizeArea, Resize, Combine(
Values((MatType)CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4),
Values(0.7, 0.4, 0.5),
Values(0.3, 0.6, 0.5),
Values((Interpolation)INTER_AREA),
Bool(),
Values(1, 16)));
OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarp, Remap_INTER_LINEAR, Combine(
Values(CV_8U, CV_16U, CV_32F),
Values(1, 3, 4),
Values(std::pair<MatType, MatType>((MatType)CV_32FC1, (MatType)CV_32FC1),
std::pair<MatType, MatType>((MatType)CV_16SC2, (MatType)CV_16UC1),
std::pair<MatType, MatType>((MatType)CV_32FC2, noType)),
Values((BorderType)BORDER_CONSTANT,
(BorderType)BORDER_REPLICATE,
(BorderType)BORDER_WRAP,
(BorderType)BORDER_REFLECT,
(BorderType)BORDER_REFLECT_101),
Bool()));
OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarp, Remap_INTER_NEAREST, Combine(
Values(CV_8U, CV_16U, CV_32F),
Values(1, 3, 4),
Values(std::pair<MatType, MatType>((MatType)CV_32FC1, (MatType)CV_32FC1),
std::pair<MatType, MatType>((MatType)CV_32FC2, noType),
std::pair<MatType, MatType>((MatType)CV_16SC2, (MatType)CV_16UC1),
std::pair<MatType, MatType>((MatType)CV_16SC2, noType)),
Values((BorderType)BORDER_CONSTANT,
(BorderType)BORDER_REPLICATE,
(BorderType)BORDER_WRAP,
(BorderType)BORDER_REFLECT,
(BorderType)BORDER_REFLECT_101),
Bool()));
} } // namespace cvtest::ocl
#endif // HAVE_OPENCL