mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
627 lines
24 KiB
627 lines
24 KiB
#ifndef OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_BUILDER_HPP |
|
#define OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_BUILDER_HPP |
|
|
|
#include <map> |
|
|
|
#include <opencv2/gapi/infer.hpp> // cv::gapi::GNetPackage |
|
#include <opencv2/gapi/streaming/cap.hpp> // cv::gapi::wip::IStreamSource |
|
#include <opencv2/gapi/infer/ie.hpp> // cv::gapi::ie::Params |
|
#include <opencv2/gapi/gcommon.hpp> // cv::gapi::GCompileArgs |
|
#include <opencv2/gapi/cpu/gcpukernel.hpp> // GAPI_OCV_KERNEL |
|
#include <opencv2/gapi/gkernel.hpp> // G_API_OP |
|
|
|
#include "pipeline.hpp" |
|
#include "utils.hpp" |
|
|
|
struct Edge { |
|
struct P { |
|
std::string name; |
|
size_t port; |
|
}; |
|
|
|
P src; |
|
P dst; |
|
}; |
|
|
|
struct CallParams { |
|
std::string name; |
|
size_t call_every_nth; |
|
}; |
|
|
|
struct CallNode { |
|
using F = std::function<void(const cv::GProtoArgs&, cv::GProtoArgs&)>; |
|
|
|
CallParams params; |
|
F run; |
|
}; |
|
|
|
struct DataNode { |
|
cv::optional<cv::GProtoArg> arg; |
|
}; |
|
|
|
struct Node { |
|
using Ptr = std::shared_ptr<Node>; |
|
using WPtr = std::weak_ptr<Node>; |
|
using Kind = cv::util::variant<CallNode, DataNode>; |
|
|
|
std::vector<Node::WPtr> in_nodes; |
|
std::vector<Node::Ptr> out_nodes; |
|
Kind kind; |
|
}; |
|
|
|
struct SubGraphCall { |
|
G_API_OP(GSubGraph, |
|
<cv::GMat(cv::GMat, cv::GComputation, cv::GCompileArgs, size_t)>, |
|
"custom.subgraph") { |
|
static cv::GMatDesc outMeta(const cv::GMatDesc& in, |
|
cv::GComputation comp, |
|
cv::GCompileArgs compile_args, |
|
const size_t call_every_nth) { |
|
GAPI_Assert(call_every_nth > 0); |
|
auto out_metas = |
|
comp.compile(in, std::move(compile_args)).outMetas(); |
|
GAPI_Assert(out_metas.size() == 1u); |
|
GAPI_Assert(cv::util::holds_alternative<cv::GMatDesc>(out_metas[0])); |
|
return cv::util::get<cv::GMatDesc>(out_metas[0]); |
|
} |
|
|
|
}; |
|
|
|
struct SubGraphState { |
|
cv::Mat last_result; |
|
cv::GCompiled cc; |
|
int call_counter = 0; |
|
}; |
|
|
|
GAPI_OCV_KERNEL_ST(SubGraphImpl, GSubGraph, SubGraphState) { |
|
static void setup(const cv::GMatDesc& in, |
|
cv::GComputation comp, |
|
cv::GCompileArgs compile_args, |
|
const size_t /*call_every_nth*/, |
|
std::shared_ptr<SubGraphState>& state, |
|
const cv::GCompileArgs& /*args*/) { |
|
state.reset(new SubGraphState{}); |
|
state->cc = comp.compile(in, std::move(compile_args)); |
|
auto out_desc = |
|
cv::util::get<cv::GMatDesc>(state->cc.outMetas()[0]); |
|
utils::createNDMat(state->last_result, |
|
out_desc.dims, |
|
out_desc.depth); |
|
} |
|
|
|
static void run(const cv::Mat& in, |
|
cv::GComputation /*comp*/, |
|
cv::GCompileArgs /*compile_args*/, |
|
const size_t call_every_nth, |
|
cv::Mat& out, |
|
SubGraphState& state) { |
|
// NB: Make a call on the first iteration and skip the furthers. |
|
if (state.call_counter == 0) { |
|
state.cc(in, state.last_result); |
|
} |
|
state.last_result.copyTo(out); |
|
state.call_counter = (state.call_counter + 1) % call_every_nth; |
|
} |
|
}; |
|
|
|
void operator()(const cv::GProtoArgs& inputs, cv::GProtoArgs& outputs); |
|
|
|
size_t numInputs() const { return 1; } |
|
size_t numOutputs() const { return 1; } |
|
|
|
cv::GComputation comp; |
|
cv::GCompileArgs compile_args; |
|
size_t call_every_nth; |
|
}; |
|
|
|
void SubGraphCall::operator()(const cv::GProtoArgs& inputs, |
|
cv::GProtoArgs& outputs) { |
|
GAPI_Assert(inputs.size() == 1u); |
|
GAPI_Assert(cv::util::holds_alternative<cv::GMat>(inputs[0])); |
|
GAPI_Assert(outputs.empty()); |
|
auto in = cv::util::get<cv::GMat>(inputs[0]); |
|
outputs.emplace_back(GSubGraph::on(in, comp, compile_args, call_every_nth)); |
|
} |
|
|
|
struct DummyCall { |
|
G_API_OP(GDummy, |
|
<cv::GMat(cv::GMat, double, OutputDescr)>, |
|
"custom.dummy") { |
|
static cv::GMatDesc outMeta(const cv::GMatDesc& /* in */, |
|
double /* time */, |
|
const OutputDescr& output) { |
|
if (output.dims.size() == 2) { |
|
return cv::GMatDesc(output.precision, |
|
1, |
|
// NB: Dims[H, W] -> Size(W, H) |
|
cv::Size(output.dims[1], output.dims[0])); |
|
} |
|
return cv::GMatDesc(output.precision, output.dims); |
|
} |
|
}; |
|
|
|
struct DummyState { |
|
cv::Mat mat; |
|
}; |
|
|
|
// NB: Generate random mat once and then |
|
// copy to dst buffer on every iteration. |
|
GAPI_OCV_KERNEL_ST(GCPUDummy, GDummy, DummyState) { |
|
static void setup(const cv::GMatDesc& /*in*/, |
|
double /*time*/, |
|
const OutputDescr& output, |
|
std::shared_ptr<DummyState>& state, |
|
const cv::GCompileArgs& /*args*/) { |
|
state.reset(new DummyState{}); |
|
utils::createNDMat(state->mat, output.dims, output.precision); |
|
utils::generateRandom(state->mat); |
|
} |
|
|
|
static void run(const cv::Mat& /*in_mat*/, |
|
double time, |
|
const OutputDescr& /*output*/, |
|
cv::Mat& out_mat, |
|
DummyState& state) { |
|
using namespace std::chrono; |
|
double total = 0; |
|
auto start = high_resolution_clock::now(); |
|
state.mat.copyTo(out_mat); |
|
while (total < time) { |
|
total = duration_cast<duration<double, std::milli>>( |
|
high_resolution_clock::now() - start).count(); |
|
} |
|
} |
|
}; |
|
|
|
void operator()(const cv::GProtoArgs& inputs, cv::GProtoArgs& outputs); |
|
|
|
size_t numInputs() const { return 1; } |
|
size_t numOutputs() const { return 1; } |
|
|
|
double time; |
|
OutputDescr output; |
|
}; |
|
|
|
void DummyCall::operator()(const cv::GProtoArgs& inputs, |
|
cv::GProtoArgs& outputs) { |
|
GAPI_Assert(inputs.size() == 1u); |
|
GAPI_Assert(cv::util::holds_alternative<cv::GMat>(inputs[0])); |
|
GAPI_Assert(outputs.empty()); |
|
auto in = cv::util::get<cv::GMat>(inputs[0]); |
|
outputs.emplace_back(GDummy::on(in, time, output)); |
|
} |
|
|
|
struct InferCall { |
|
void operator()(const cv::GProtoArgs& inputs, cv::GProtoArgs& outputs); |
|
size_t numInputs() const { return input_layers.size(); } |
|
size_t numOutputs() const { return output_layers.size(); } |
|
|
|
std::string tag; |
|
std::vector<std::string> input_layers; |
|
std::vector<std::string> output_layers; |
|
}; |
|
|
|
void InferCall::operator()(const cv::GProtoArgs& inputs, |
|
cv::GProtoArgs& outputs) { |
|
GAPI_Assert(inputs.size() == input_layers.size()); |
|
GAPI_Assert(outputs.empty()); |
|
|
|
cv::GInferInputs g_inputs; |
|
// TODO: Add an opportunity not specify input/output layers in case |
|
// there is only single layer. |
|
for (size_t i = 0; i < inputs.size(); ++i) { |
|
// TODO: Support GFrame as well. |
|
GAPI_Assert(cv::util::holds_alternative<cv::GMat>(inputs[i])); |
|
auto in = cv::util::get<cv::GMat>(inputs[i]); |
|
g_inputs[input_layers[i]] = in; |
|
} |
|
auto g_outputs = cv::gapi::infer<cv::gapi::Generic>(tag, g_inputs); |
|
for (size_t i = 0; i < output_layers.size(); ++i) { |
|
outputs.emplace_back(g_outputs.at(output_layers[i])); |
|
} |
|
} |
|
|
|
struct SourceCall { |
|
void operator()(const cv::GProtoArgs& inputs, cv::GProtoArgs& outputs); |
|
size_t numInputs() const { return 0; } |
|
size_t numOutputs() const { return 1; } |
|
}; |
|
|
|
void SourceCall::operator()(const cv::GProtoArgs& inputs, |
|
cv::GProtoArgs& outputs) { |
|
GAPI_Assert(inputs.empty()); |
|
GAPI_Assert(outputs.empty()); |
|
// NB: Since NV12 isn't exposed source always produce GMat. |
|
outputs.emplace_back(cv::GMat()); |
|
} |
|
|
|
struct LoadPath { |
|
std::string xml; |
|
std::string bin; |
|
}; |
|
|
|
struct ImportPath { |
|
std::string blob; |
|
}; |
|
|
|
using ModelPath = cv::util::variant<ImportPath, LoadPath>; |
|
|
|
struct DummyParams { |
|
double time; |
|
OutputDescr output; |
|
}; |
|
|
|
struct InferParams { |
|
std::string name; |
|
ModelPath path; |
|
std::string device; |
|
std::vector<std::string> input_layers; |
|
std::vector<std::string> output_layers; |
|
std::map<std::string, std::string> config; |
|
cv::gapi::ie::InferMode mode; |
|
cv::util::optional<int> out_precision; |
|
}; |
|
|
|
class PipelineBuilder { |
|
public: |
|
PipelineBuilder(); |
|
void addDummy(const CallParams& call_params, |
|
const DummyParams& dummy_params); |
|
|
|
void addInfer(const CallParams& call_params, |
|
const InferParams& infer_params); |
|
|
|
void setSource(const std::string& name, |
|
std::shared_ptr<DummySource> src); |
|
|
|
void addEdge(const Edge& edge); |
|
void setMode(PLMode mode); |
|
void setDumpFilePath(const std::string& dump); |
|
void setQueueCapacity(const size_t qc); |
|
void setName(const std::string& name); |
|
|
|
Pipeline::Ptr build(); |
|
|
|
private: |
|
template <typename CallT> |
|
void addCall(const CallParams& call_params, |
|
CallT&& call); |
|
|
|
Pipeline::Ptr construct(); |
|
|
|
template <typename K, typename V> |
|
using M = std::unordered_map<K, V>; |
|
struct State { |
|
struct NodeEdges { |
|
std::vector<Edge> input_edges; |
|
std::vector<Edge> output_edges; |
|
}; |
|
|
|
M<std::string, Node::Ptr> calls_map; |
|
std::vector<Node::Ptr> all_calls; |
|
|
|
cv::gapi::GNetPackage networks; |
|
cv::gapi::GKernelPackage kernels; |
|
cv::GCompileArgs compile_args; |
|
std::shared_ptr<DummySource> src; |
|
PLMode mode = PLMode::STREAMING; |
|
std::string name; |
|
}; |
|
|
|
std::unique_ptr<State> m_state; |
|
}; |
|
|
|
PipelineBuilder::PipelineBuilder() : m_state(new State{}) { }; |
|
|
|
void PipelineBuilder::addDummy(const CallParams& call_params, |
|
const DummyParams& dummy_params) { |
|
m_state->kernels.include<DummyCall::GCPUDummy>(); |
|
addCall(call_params, |
|
DummyCall{dummy_params.time, dummy_params.output}); |
|
} |
|
|
|
template <typename CallT> |
|
void PipelineBuilder::addCall(const CallParams& call_params, |
|
CallT&& call) { |
|
|
|
size_t num_inputs = call.numInputs(); |
|
size_t num_outputs = call.numOutputs(); |
|
Node::Ptr call_node(new Node{{},{},Node::Kind{CallNode{call_params, |
|
std::move(call)}}}); |
|
// NB: Create placeholders for inputs. |
|
call_node->in_nodes.resize(num_inputs); |
|
// NB: Create outputs with empty data. |
|
for (size_t i = 0; i < num_outputs; ++i) { |
|
call_node->out_nodes.emplace_back(new Node{{call_node}, |
|
{}, |
|
Node::Kind{DataNode{}}}); |
|
} |
|
|
|
auto it = m_state->calls_map.find(call_params.name); |
|
if (it != m_state->calls_map.end()) { |
|
throw std::logic_error("Node: " + call_params.name + " already exists!"); |
|
} |
|
m_state->calls_map.emplace(call_params.name, call_node); |
|
m_state->all_calls.emplace_back(call_node); |
|
} |
|
|
|
void PipelineBuilder::addInfer(const CallParams& call_params, |
|
const InferParams& infer_params) { |
|
// NB: No default ctor for Params. |
|
std::unique_ptr<cv::gapi::ie::Params<cv::gapi::Generic>> pp; |
|
if (cv::util::holds_alternative<LoadPath>(infer_params.path)) { |
|
auto load_path = cv::util::get<LoadPath>(infer_params.path); |
|
pp.reset(new cv::gapi::ie::Params<cv::gapi::Generic>(call_params.name, |
|
load_path.xml, |
|
load_path.bin, |
|
infer_params.device)); |
|
} else { |
|
GAPI_Assert(cv::util::holds_alternative<ImportPath>(infer_params.path)); |
|
auto import_path = cv::util::get<ImportPath>(infer_params.path); |
|
pp.reset(new cv::gapi::ie::Params<cv::gapi::Generic>(call_params.name, |
|
import_path.blob, |
|
infer_params.device)); |
|
} |
|
|
|
pp->pluginConfig(infer_params.config); |
|
pp->cfgInferMode(infer_params.mode); |
|
if (infer_params.out_precision) { |
|
pp->cfgOutputPrecision(infer_params.out_precision.value()); |
|
} |
|
m_state->networks += cv::gapi::networks(*pp); |
|
|
|
addCall(call_params, |
|
InferCall{call_params.name, |
|
infer_params.input_layers, |
|
infer_params.output_layers}); |
|
} |
|
|
|
void PipelineBuilder::addEdge(const Edge& edge) { |
|
const auto& src_it = m_state->calls_map.find(edge.src.name); |
|
if (src_it == m_state->calls_map.end()) { |
|
throw std::logic_error("Failed to find node: " + edge.src.name); |
|
} |
|
auto src_node = src_it->second; |
|
if (src_node->out_nodes.size() <= edge.src.port) { |
|
throw std::logic_error("Failed to access node: " + edge.src.name + |
|
" by out port: " + std::to_string(edge.src.port)); |
|
} |
|
|
|
auto dst_it = m_state->calls_map.find(edge.dst.name); |
|
if (dst_it == m_state->calls_map.end()) { |
|
throw std::logic_error("Failed to find node: " + edge.dst.name); |
|
} |
|
auto dst_node = dst_it->second; |
|
if (dst_node->in_nodes.size() <= edge.dst.port) { |
|
throw std::logic_error("Failed to access node: " + edge.dst.name + |
|
" by in port: " + std::to_string(edge.dst.port)); |
|
} |
|
|
|
auto out_data = src_node->out_nodes[edge.src.port]; |
|
auto& in_data = dst_node->in_nodes[edge.dst.port]; |
|
// NB: in_data != nullptr. |
|
if (!in_data.expired()) { |
|
throw std::logic_error("Node: " + edge.dst.name + |
|
" already connected by in port: " + |
|
std::to_string(edge.dst.port)); |
|
} |
|
dst_node->in_nodes[edge.dst.port] = out_data; |
|
out_data->out_nodes.push_back(dst_node); |
|
} |
|
|
|
void PipelineBuilder::setSource(const std::string& name, |
|
std::shared_ptr<DummySource> src) { |
|
GAPI_Assert(!m_state->src && "Only single source pipelines are supported!"); |
|
m_state->src = src; |
|
addCall(CallParams{name, 1u/*call_every_nth*/}, SourceCall{}); |
|
} |
|
|
|
void PipelineBuilder::setMode(PLMode mode) { |
|
m_state->mode = mode; |
|
} |
|
|
|
void PipelineBuilder::setDumpFilePath(const std::string& dump) { |
|
m_state->compile_args.emplace_back(cv::graph_dump_path{dump}); |
|
} |
|
|
|
void PipelineBuilder::setQueueCapacity(const size_t qc) { |
|
m_state->compile_args.emplace_back(cv::gapi::streaming::queue_capacity{qc}); |
|
} |
|
|
|
void PipelineBuilder::setName(const std::string& name) { |
|
m_state->name = name; |
|
} |
|
|
|
static bool visit(Node::Ptr node, |
|
std::vector<Node::Ptr>& sorted, |
|
std::unordered_map<Node::Ptr, int>& visited) { |
|
if (!node) { |
|
throw std::logic_error("Found null node"); |
|
} |
|
|
|
visited[node] = 1; |
|
for (auto in : node->in_nodes) { |
|
auto in_node = in.lock(); |
|
if (visited[in_node] == 0) { |
|
if (visit(in_node, sorted, visited)) { |
|
return true; |
|
} |
|
} else if (visited[in_node] == 1) { |
|
return true; |
|
} |
|
} |
|
visited[node] = 2; |
|
sorted.push_back(node); |
|
return false; |
|
} |
|
|
|
static cv::optional<std::vector<Node::Ptr>> |
|
toposort(const std::vector<Node::Ptr> nodes) { |
|
std::vector<Node::Ptr> sorted; |
|
std::unordered_map<Node::Ptr, int> visited; |
|
for (auto n : nodes) { |
|
if (visit(n, sorted, visited)) { |
|
return cv::optional<std::vector<Node::Ptr>>{}; |
|
} |
|
} |
|
return cv::util::make_optional(sorted); |
|
} |
|
|
|
Pipeline::Ptr PipelineBuilder::construct() { |
|
// NB: Unlike G-API, pipeline_builder_tool graph always starts with CALL node |
|
// (not data) that produce datas, so the call node which doesn't have |
|
// inputs is considered as "producer" node. |
|
// |
|
// Graph always starts with CALL node and ends with DATA node. |
|
// Graph example: [source] -> (source:0) -> [PP] -> (PP:0) |
|
// |
|
// The algorithm is quite simple: |
|
// 0. Verify that every call input node exists (connected). |
|
// 1. Sort all nodes by visiting only call nodes, |
|
// since there is no data nodes that's not connected with any call node, |
|
// it's guarantee that every node will be visited. |
|
// 2. Fillter call nodes. |
|
// 3. Go through every call node. |
|
// FIXME: Add toposort in case user passed nodes |
|
// in arbitrary order which is unlikely happened. |
|
// 4. Extract proto input from every input node |
|
// 5. Run call and get outputs |
|
// 6. If call node doesn't have inputs it means that it's "producer" node, |
|
// so collect all outputs to graph_inputs vector. |
|
// 7. Assign proto outputs to output data nodes, |
|
// so the next calls can use them as inputs. |
|
cv::GProtoArgs graph_inputs; |
|
cv::GProtoArgs graph_outputs; |
|
// 0. Verify that every call input node exists (connected). |
|
for (auto call_node : m_state->all_calls) { |
|
for (size_t i = 0; i < call_node->in_nodes.size(); ++i) { |
|
const auto& in_data_node = call_node->in_nodes[i]; |
|
// NB: in_data_node == nullptr. |
|
if (in_data_node.expired()) { |
|
const auto& call = cv::util::get<CallNode>(call_node->kind); |
|
throw std::logic_error( |
|
"Node: " + call.params.name + " in Pipeline: " + m_state->name + |
|
" has dangling input by in port: " + std::to_string(i)); |
|
} |
|
} |
|
} |
|
// (0) Sort all nodes; |
|
auto has_sorted = toposort(m_state->all_calls); |
|
if (!has_sorted) { |
|
throw std::logic_error( |
|
"Pipeline: " + m_state->name + " has cyclic dependencies") ; |
|
} |
|
auto& sorted = has_sorted.value(); |
|
// (1). Fillter call nodes. |
|
std::vector<Node::Ptr> sorted_calls; |
|
for (auto n : sorted) { |
|
if (cv::util::holds_alternative<CallNode>(n->kind)) { |
|
sorted_calls.push_back(n); |
|
} |
|
} |
|
|
|
m_state->kernels.include<SubGraphCall::SubGraphImpl>(); |
|
m_state->compile_args.emplace_back(m_state->networks); |
|
m_state->compile_args.emplace_back(m_state->kernels); |
|
|
|
// (2). Go through every call node. |
|
for (auto call_node : sorted_calls) { |
|
auto& call = cv::util::get<CallNode>(call_node->kind); |
|
cv::GProtoArgs outputs; |
|
cv::GProtoArgs inputs; |
|
for (size_t i = 0; i < call_node->in_nodes.size(); ++i) { |
|
auto in_node = call_node->in_nodes.at(i); |
|
auto in_data = cv::util::get<DataNode>(in_node.lock()->kind); |
|
if (!in_data.arg.has_value()) { |
|
throw std::logic_error("data hasn't been provided"); |
|
} |
|
// (3). Extract proto input from every input node. |
|
inputs.push_back(in_data.arg.value()); |
|
} |
|
// NB: If node shouldn't be called on each iterations, |
|
// it should be wrapped into subgraph which is able to skip calling. |
|
if (call.params.call_every_nth != 1u) { |
|
// FIXME: Limitation of the subgraph operation (<GMat(GMat)>). |
|
// G-API doesn't support dynamic number of inputs/outputs. |
|
if (inputs.size() > 1u) { |
|
throw std::logic_error( |
|
"skip_frame_nth is supported only for single input subgraphs\n" |
|
"Current subgraph has " + std::to_string(inputs.size()) + " inputs"); |
|
} |
|
|
|
if (outputs.size() > 1u) { |
|
throw std::logic_error( |
|
"skip_frame_nth is supported only for single output subgraphs\n" |
|
"Current subgraph has " + std::to_string(inputs.size()) + " outputs"); |
|
} |
|
// FIXME: Should be generalized. |
|
// Now every subgraph contains only single node |
|
// which has single input/output. |
|
GAPI_Assert(cv::util::holds_alternative<cv::GMat>(inputs[0])); |
|
cv::GProtoArgs subgr_inputs{cv::GProtoArg{cv::GMat()}}; |
|
cv::GProtoArgs subgr_outputs; |
|
call.run(subgr_inputs, subgr_outputs); |
|
auto comp = cv::GComputation(cv::GProtoInputArgs{subgr_inputs}, |
|
cv::GProtoOutputArgs{subgr_outputs}); |
|
call = CallNode{CallParams{call.params.name, 1u/*call_every_nth*/}, |
|
SubGraphCall{std::move(comp), |
|
m_state->compile_args, |
|
call.params.call_every_nth}}; |
|
} |
|
// (4). Run call and get outputs. |
|
call.run(inputs, outputs); |
|
// (5) If call node doesn't have inputs |
|
// it means that it's input producer node (Source). |
|
if (call_node->in_nodes.empty()) { |
|
for (auto out : outputs) { |
|
graph_inputs.push_back(out); |
|
} |
|
} |
|
// (6). Assign proto outputs to output data nodes, |
|
// so the next calls can use them as inputs. |
|
GAPI_Assert(outputs.size() == call_node->out_nodes.size()); |
|
for (size_t i = 0; i < outputs.size(); ++i) { |
|
auto out_node = call_node->out_nodes[i]; |
|
auto& out_data = cv::util::get<DataNode>(out_node->kind); |
|
out_data.arg = cv::util::make_optional(outputs[i]); |
|
if (out_node->out_nodes.empty()) { |
|
graph_outputs.push_back(out_data.arg.value()); |
|
} |
|
} |
|
} |
|
|
|
if (m_state->mode == PLMode::STREAMING) { |
|
GAPI_Assert(graph_inputs.size() == 1); |
|
GAPI_Assert(cv::util::holds_alternative<cv::GMat>(graph_inputs[0])); |
|
// FIXME: Handle GFrame when NV12 comes. |
|
const auto& graph_input = cv::util::get<cv::GMat>(graph_inputs[0]); |
|
// NB: In case streaming mode need to expose timestamp in order to |
|
// calculate performance metrics. |
|
graph_outputs.emplace_back( |
|
cv::gapi::streaming::timestamp(graph_input).strip()); |
|
|
|
return std::make_shared<StreamingPipeline>(std::move(m_state->name), |
|
cv::GComputation( |
|
cv::GProtoInputArgs{graph_inputs}, |
|
cv::GProtoOutputArgs{graph_outputs}), |
|
std::move(m_state->src), |
|
std::move(m_state->compile_args), |
|
graph_outputs.size()); |
|
} |
|
GAPI_Assert(m_state->mode == PLMode::REGULAR); |
|
return std::make_shared<RegularPipeline>(std::move(m_state->name), |
|
cv::GComputation( |
|
cv::GProtoInputArgs{graph_inputs}, |
|
cv::GProtoOutputArgs{graph_outputs}), |
|
std::move(m_state->src), |
|
std::move(m_state->compile_args), |
|
graph_outputs.size()); |
|
} |
|
|
|
Pipeline::Ptr PipelineBuilder::build() { |
|
auto pipeline = construct(); |
|
m_state.reset(new State{}); |
|
return pipeline; |
|
} |
|
|
|
#endif // OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_BUILDER_HPP
|
|
|