Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
551 lines
17 KiB
551 lines
17 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
static |
|
void warpFrame(const Mat& image, const Mat& depth, const Mat& rvec, const Mat& tvec, const Mat& K, |
|
Mat& warpedImage, Mat& warpedDepth) |
|
{ |
|
CV_Assert(!image.empty()); |
|
CV_Assert(image.type() == CV_8UC1); |
|
|
|
CV_Assert(depth.size() == image.size()); |
|
CV_Assert(depth.type() == CV_32FC1); |
|
|
|
CV_Assert(!rvec.empty()); |
|
CV_Assert(rvec.total() == 3); |
|
CV_Assert(rvec.type() == CV_64FC1); |
|
|
|
CV_Assert(!tvec.empty()); |
|
CV_Assert(tvec.size() == Size(1, 3)); |
|
CV_Assert(tvec.type() == CV_64FC1); |
|
|
|
warpedImage.create(image.size(), CV_8UC1); |
|
warpedImage = Scalar(0); |
|
warpedDepth.create(image.size(), CV_32FC1); |
|
warpedDepth = Scalar(FLT_MAX); |
|
|
|
Mat cloud; |
|
depthTo3d(depth, K, cloud); |
|
|
|
Mat cloud3, channels[4]; |
|
cv::split(cloud, channels); |
|
std::vector<Mat> merged = { channels[0], channels[1], channels[2] }; |
|
cv::merge(merged, cloud3); |
|
|
|
Mat Rt = Mat::eye(4, 4, CV_64FC1); |
|
{ |
|
Mat R, dst; |
|
cv::Rodrigues(rvec, R); |
|
|
|
dst = Rt(Rect(0,0,3,3)); |
|
R.copyTo(dst); |
|
|
|
dst = Rt(Rect(3,0,1,3)); |
|
tvec.copyTo(dst); |
|
} |
|
Mat warpedCloud, warpedImagePoints; |
|
perspectiveTransform(cloud3, warpedCloud, Rt); |
|
projectPoints(warpedCloud.reshape(3, 1), Mat(3,1,CV_32FC1, Scalar(0)), Mat(3,1,CV_32FC1, Scalar(0)), K, Mat(1,5,CV_32FC1, Scalar(0)), warpedImagePoints); |
|
warpedImagePoints = warpedImagePoints.reshape(2, cloud.rows); |
|
Rect r(0, 0, image.cols, image.rows); |
|
for(int y = 0; y < cloud.rows; y++) |
|
{ |
|
for(int x = 0; x < cloud.cols; x++) |
|
{ |
|
Point p = warpedImagePoints.at<Point2f>(y,x); |
|
if(r.contains(p)) |
|
{ |
|
float curDepth = warpedDepth.at<float>(p.y, p.x); |
|
float newDepth = warpedCloud.at<Point3f>(y, x).z; |
|
if(newDepth < curDepth && newDepth > 0) |
|
{ |
|
warpedImage.at<uchar>(p.y, p.x) = image.at<uchar>(y,x); |
|
warpedDepth.at<float>(p.y, p.x) = newDepth; |
|
} |
|
} |
|
} |
|
} |
|
warpedDepth.setTo(std::numeric_limits<float>::quiet_NaN(), warpedDepth > 100); |
|
} |
|
|
|
static |
|
void dilateFrame(Mat& image, Mat& depth) |
|
{ |
|
CV_Assert(!image.empty()); |
|
CV_Assert(image.type() == CV_8UC1); |
|
|
|
CV_Assert(!depth.empty()); |
|
CV_Assert(depth.type() == CV_32FC1); |
|
CV_Assert(depth.size() == image.size()); |
|
|
|
Mat mask(image.size(), CV_8UC1, Scalar(255)); |
|
for(int y = 0; y < depth.rows; y++) |
|
for(int x = 0; x < depth.cols; x++) |
|
if(cvIsNaN(depth.at<float>(y,x)) || depth.at<float>(y,x) > 10 || depth.at<float>(y,x) <= FLT_EPSILON) |
|
mask.at<uchar>(y,x) = 0; |
|
|
|
image.setTo(255, ~mask); |
|
Mat minImage; |
|
erode(image, minImage, Mat()); |
|
|
|
image.setTo(0, ~mask); |
|
Mat maxImage; |
|
dilate(image, maxImage, Mat()); |
|
|
|
depth.setTo(FLT_MAX, ~mask); |
|
Mat minDepth; |
|
erode(depth, minDepth, Mat()); |
|
|
|
depth.setTo(0, ~mask); |
|
Mat maxDepth; |
|
dilate(depth, maxDepth, Mat()); |
|
|
|
Mat dilatedMask; |
|
dilate(mask, dilatedMask, Mat(), Point(-1,-1), 1); |
|
for(int y = 0; y < depth.rows; y++) |
|
for(int x = 0; x < depth.cols; x++) |
|
if(!mask.at<uchar>(y,x) && dilatedMask.at<uchar>(y,x)) |
|
{ |
|
image.at<uchar>(y,x) = static_cast<uchar>(0.5f * (static_cast<float>(minImage.at<uchar>(y,x)) + |
|
static_cast<float>(maxImage.at<uchar>(y,x)))); |
|
depth.at<float>(y,x) = 0.5f * (minDepth.at<float>(y,x) + maxDepth.at<float>(y,x)); |
|
} |
|
} |
|
|
|
class OdometryTest |
|
{ |
|
public: |
|
OdometryTest(OdometryType _otype, |
|
OdometryAlgoType _algtype, |
|
double _maxError1, |
|
double _maxError5, |
|
bool _testScale = false, |
|
double _idError = DBL_EPSILON) : |
|
otype(_otype), |
|
algtype(_algtype), |
|
maxError1(_maxError1), |
|
maxError5(_maxError5), |
|
testScale(_testScale), |
|
idError(_idError) |
|
{ } |
|
|
|
void readData(Mat& image, Mat& depth) const; |
|
static Mat getCameraMatrix() |
|
{ |
|
float fx = 525.0f, // default |
|
fy = 525.0f, |
|
cx = 319.5f, |
|
cy = 239.5f; |
|
Matx33f K(fx, 0, cx, |
|
0, fy, cy, |
|
0, 0, 1); |
|
return Mat(K); |
|
} |
|
static void generateRandomTransformation(Mat& R, Mat& t); |
|
|
|
void run(); |
|
void checkUMats(); |
|
void prepareFrameCheck(); |
|
|
|
OdometryType otype; |
|
OdometryAlgoType algtype; |
|
double maxError1; |
|
double maxError5; |
|
bool testScale; |
|
double idError; |
|
}; |
|
|
|
|
|
void OdometryTest::readData(Mat& image, Mat& depth) const |
|
{ |
|
std::string dataPath = cvtest::TS::ptr()->get_data_path(); |
|
std::string imageFilename = dataPath + "/cv/rgbd/rgb.png"; |
|
std::string depthFilename = dataPath + "/cv/rgbd/depth.png"; |
|
|
|
image = imread(imageFilename, 0); |
|
depth = imread(depthFilename, -1); |
|
|
|
if(image.empty()) |
|
{ |
|
FAIL() << "Image " << imageFilename.c_str() << " can not be read" << std::endl; |
|
} |
|
if(depth.empty()) |
|
{ |
|
FAIL() << "Depth" << depthFilename.c_str() << "can not be read" << std::endl; |
|
} |
|
|
|
CV_DbgAssert(image.type() == CV_8UC1); |
|
CV_DbgAssert(depth.type() == CV_16UC1); |
|
{ |
|
Mat depth_flt; |
|
depth.convertTo(depth_flt, CV_32FC1, 1.f/5000.f); |
|
depth_flt.setTo(std::numeric_limits<float>::quiet_NaN(), depth_flt < FLT_EPSILON); |
|
depth = depth_flt; |
|
} |
|
} |
|
|
|
void OdometryTest::generateRandomTransformation(Mat& rvec, Mat& tvec) |
|
{ |
|
const float maxRotation = (float)(3.f / 180.f * CV_PI); //rad |
|
const float maxTranslation = 0.02f; //m |
|
|
|
RNG& rng = theRNG(); |
|
rvec.create(3, 1, CV_64FC1); |
|
tvec.create(3, 1, CV_64FC1); |
|
|
|
randu(rvec, Scalar(-1000), Scalar(1000)); |
|
normalize(rvec, rvec, rng.uniform(0.007f, maxRotation)); |
|
|
|
randu(tvec, Scalar(-1000), Scalar(1000)); |
|
normalize(tvec, tvec, rng.uniform(0.008f, maxTranslation)); |
|
} |
|
|
|
void OdometryTest::checkUMats() |
|
{ |
|
Mat K = getCameraMatrix(); |
|
|
|
Mat image, depth; |
|
readData(image, depth); |
|
|
|
OdometrySettings ods; |
|
ods.setCameraMatrix(K); |
|
Odometry odometry = Odometry(otype, ods, algtype); |
|
OdometryFrame odf = odometry.createOdometryFrame(OdometryFrameStoreType::UMAT); |
|
|
|
Mat calcRt; |
|
|
|
UMat uimage, udepth; |
|
image.copyTo(uimage); |
|
depth.copyTo(udepth); |
|
odf.setImage(uimage); |
|
odf.setDepth(udepth); |
|
uimage.release(); |
|
udepth.release(); |
|
|
|
odometry.prepareFrame(odf); |
|
bool isComputed = odometry.compute(odf, odf, calcRt); |
|
ASSERT_TRUE(isComputed); |
|
double diff = cv::norm(calcRt, Mat::eye(4, 4, CV_64FC1)); |
|
if (diff > idError) |
|
{ |
|
FAIL() << "Incorrect transformation between the same frame (not the identity matrix), diff = " << diff << std::endl; |
|
} |
|
|
|
} |
|
|
|
void OdometryTest::run() |
|
{ |
|
Mat K = getCameraMatrix(); |
|
|
|
Mat image, depth; |
|
readData(image, depth); |
|
OdometrySettings ods; |
|
ods.setCameraMatrix(K); |
|
Odometry odometry = Odometry(otype, ods, algtype); |
|
OdometryFrame odf = odometry.createOdometryFrame(); |
|
odf.setImage(image); |
|
odf.setDepth(depth); |
|
Mat calcRt; |
|
float scale = 1.0f; |
|
|
|
// 1. Try to find Rt between the same frame (try masks also). |
|
Mat mask(image.size(), CV_8UC1, Scalar(255)); |
|
|
|
odometry.prepareFrame(odf); |
|
bool isComputed; |
|
if (testScale) |
|
isComputed = odometry.compute(odf, odf, calcRt, scale); |
|
else |
|
isComputed = odometry.compute(odf, odf, calcRt); |
|
|
|
if(!isComputed) |
|
{ |
|
FAIL() << "Can not find Rt between the same frame" << std::endl; |
|
} |
|
double ndiff = cv::norm(calcRt, Mat::eye(4,4,CV_64FC1)); |
|
float sdiff = abs(scale - 1.f); |
|
if (ndiff > idError && abs(scale - 1.f) < FLT_EPSILON) |
|
{ |
|
FAIL() << "Incorrect transformation between the same frame (not the identity matrix), diff = " << ndiff << " sdiff = " << sdiff << std::endl; |
|
} |
|
|
|
// 2. Generate random rigid body motion in some ranges several times (iterCount). |
|
// On each iteration an input frame is warped using generated transformation. |
|
// Odometry is run on the following pair: the original frame and the warped one. |
|
// Comparing a computed transformation with an applied one we compute 2 errors: |
|
// better_1time_count - count of poses which error is less than ground truth pose, |
|
// better_5times_count - count of poses which error is 5 times less than ground truth pose. |
|
int iterCount = 100; |
|
int better_1time_count = 0; |
|
int better_5times_count = 0; |
|
for (int iter = 0; iter < iterCount; iter++) |
|
{ |
|
Mat rvec, tvec; |
|
generateRandomTransformation(rvec, tvec); |
|
|
|
Mat warpedImage, warpedDepth, scaledDepth; |
|
|
|
float test_scale = 1.03f; |
|
scaledDepth = testScale ? depth * test_scale : depth; |
|
|
|
warpFrame(image, scaledDepth, rvec, tvec, K, warpedImage, warpedDepth); |
|
dilateFrame(warpedImage, warpedDepth); // due to inaccuracy after warping |
|
|
|
OdometryFrame odfSrc = odometry.createOdometryFrame(); |
|
OdometryFrame odfDst = odometry.createOdometryFrame(); |
|
|
|
float scale_error = 0.05f; |
|
|
|
odfSrc.setImage(image); |
|
odfSrc.setDepth(depth); |
|
odfDst.setImage(warpedImage); |
|
odfDst.setDepth(warpedDepth); |
|
|
|
odometry.prepareFrames(odfSrc, odfDst); |
|
if (testScale) |
|
isComputed = odometry.compute(odfSrc, odfDst, calcRt, scale); |
|
else |
|
isComputed = odometry.compute(odfSrc, odfDst, calcRt); |
|
|
|
if (!isComputed) |
|
{ |
|
CV_LOG_INFO(NULL, "Iter " << iter << "; Odometry compute returned false"); |
|
continue; |
|
} |
|
Mat calcR = calcRt(Rect(0, 0, 3, 3)), calcRvec; |
|
cv::Rodrigues(calcR, calcRvec); |
|
calcRvec = calcRvec.reshape(rvec.channels(), rvec.rows); |
|
Mat calcTvec = calcRt(Rect(3,0,1,3)); |
|
|
|
if (cvtest::debugLevel >= 10) |
|
{ |
|
imshow("image", image); |
|
imshow("warpedImage", warpedImage); |
|
Mat resultImage, resultDepth; |
|
warpFrame(image, depth, calcRvec, calcTvec, K, resultImage, resultDepth); |
|
imshow("resultImage", resultImage); |
|
waitKey(100); |
|
} |
|
|
|
// compare rotation |
|
double possibleError = algtype == OdometryAlgoType::COMMON ? 0.11f : 0.015f; |
|
if (testScale) |
|
possibleError = 0.2f; |
|
|
|
Affine3f src = Affine3f(Vec3f(rvec), Vec3f(tvec)); |
|
Affine3f res = Affine3f(Vec3f(calcRvec), Vec3f(calcTvec)); |
|
Affine3f src_inv = src.inv(); |
|
Affine3f diff = res * src_inv; |
|
double rdiffnorm = cv::norm(diff.rvec()); |
|
double tdiffnorm = cv::norm(diff.translation()); |
|
|
|
if (rdiffnorm < possibleError && tdiffnorm < possibleError && abs(scale - test_scale) < scale_error) |
|
better_1time_count++; |
|
if (5. * rdiffnorm < possibleError && 5 * tdiffnorm < possibleError && abs(scale - test_scale) < scale_error) |
|
better_5times_count++; |
|
|
|
CV_LOG_INFO(NULL, "Iter " << iter); |
|
CV_LOG_INFO(NULL, "rdiff: " << Vec3f(diff.rvec()) << "; rdiffnorm: " << rdiffnorm); |
|
CV_LOG_INFO(NULL, "tdiff: " << Vec3f(diff.translation()) << "; tdiffnorm: " << tdiffnorm); |
|
CV_LOG_INFO(NULL, "test_scale: " << test_scale << "; scale: " << scale); |
|
|
|
CV_LOG_INFO(NULL, "better_1time_count " << better_1time_count << "; better_5time_count " << better_5times_count); |
|
} |
|
|
|
if(static_cast<double>(better_1time_count) < maxError1 * static_cast<double>(iterCount)) |
|
{ |
|
FAIL() << "Incorrect count of accurate poses [1st case]: " |
|
<< static_cast<double>(better_1time_count) << " / " |
|
<< maxError1 * static_cast<double>(iterCount) << std::endl; |
|
} |
|
|
|
if(static_cast<double>(better_5times_count) < maxError5 * static_cast<double>(iterCount)) |
|
{ |
|
FAIL() << "Incorrect count of accurate poses [2nd case]: " |
|
<< static_cast<double>(better_5times_count) << " / " |
|
<< maxError5 * static_cast<double>(iterCount) << std::endl; |
|
} |
|
} |
|
|
|
void OdometryTest::prepareFrameCheck() |
|
{ |
|
Mat K = getCameraMatrix(); |
|
|
|
Mat image, depth; |
|
readData(image, depth); |
|
OdometrySettings ods; |
|
ods.setCameraMatrix(K); |
|
Odometry odometry = Odometry(otype, ods, algtype); |
|
OdometryFrame odf = odometry.createOdometryFrame(); |
|
odf.setImage(image); |
|
odf.setDepth(depth); |
|
|
|
odometry.prepareFrame(odf); |
|
|
|
Mat points, mask; |
|
odf.getPyramidAt(points, OdometryFramePyramidType::PYR_CLOUD, 0); |
|
odf.getPyramidAt(mask, OdometryFramePyramidType::PYR_MASK, 0); |
|
|
|
OdometryFrame todf = odometry.createOdometryFrame(); |
|
if (otype != OdometryType::DEPTH) |
|
{ |
|
Mat img; |
|
odf.getPyramidAt(img, OdometryFramePyramidType::PYR_IMAGE, 0); |
|
todf.setPyramidLevel(1, OdometryFramePyramidType::PYR_IMAGE); |
|
todf.setPyramidAt(img, OdometryFramePyramidType::PYR_IMAGE, 0); |
|
} |
|
todf.setPyramidLevel(1, OdometryFramePyramidType::PYR_CLOUD); |
|
todf.setPyramidAt(points, OdometryFramePyramidType::PYR_CLOUD, 0); |
|
todf.setPyramidLevel(1, OdometryFramePyramidType::PYR_MASK); |
|
todf.setPyramidAt(mask, OdometryFramePyramidType::PYR_MASK, 0); |
|
|
|
odometry.prepareFrame(todf); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Tests registrations * |
|
\****************************************************************************************/ |
|
|
|
TEST(RGBD_Odometry_Rgbd, algorithmic) |
|
{ |
|
OdometryTest test(OdometryType::RGB, OdometryAlgoType::COMMON, 0.99, 0.89); |
|
test.run(); |
|
} |
|
|
|
TEST(RGBD_Odometry_ICP, algorithmic) |
|
{ |
|
OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::COMMON, 0.99, 0.99); |
|
test.run(); |
|
} |
|
|
|
TEST(RGBD_Odometry_ICP_Scale, algorithmic) |
|
{ |
|
OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::COMMON, 0.65, 0.0, true); |
|
test.run(); |
|
} |
|
|
|
TEST(RGBD_Odometry_RgbdICP, algorithmic) |
|
{ |
|
OdometryTest test(OdometryType::RGB_DEPTH, OdometryAlgoType::COMMON, 0.99, 0.99); |
|
test.run(); |
|
} |
|
|
|
TEST(RGBD_Odometry_FastICP, algorithmic) |
|
{ |
|
OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::FAST, 0.99, 0.89, false, FLT_EPSILON); |
|
test.run(); |
|
} |
|
|
|
|
|
TEST(RGBD_Odometry_Rgbd, UMats) |
|
{ |
|
OdometryTest test(OdometryType::RGB, OdometryAlgoType::COMMON, 0.99, 0.89); |
|
test.checkUMats(); |
|
} |
|
|
|
TEST(RGBD_Odometry_ICP, UMats) |
|
{ |
|
OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::COMMON, 0.99, 0.99); |
|
test.checkUMats(); |
|
} |
|
|
|
TEST(RGBD_Odometry_RgbdICP, UMats) |
|
{ |
|
OdometryTest test(OdometryType::RGB_DEPTH, OdometryAlgoType::COMMON, 0.99, 0.99); |
|
test.checkUMats(); |
|
} |
|
|
|
TEST(RGBD_Odometry_FastICP, UMats) |
|
{ |
|
OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::FAST, 0.99, 0.89, false, FLT_EPSILON); |
|
test.checkUMats(); |
|
} |
|
|
|
|
|
TEST(RGBD_Odometry_Rgbd, prepareFrame) |
|
{ |
|
OdometryTest test(OdometryType::RGB, OdometryAlgoType::COMMON, 0.99, 0.89); |
|
test.prepareFrameCheck(); |
|
} |
|
|
|
TEST(RGBD_Odometry_ICP, prepareFrame) |
|
{ |
|
OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::COMMON, 0.99, 0.99); |
|
test.prepareFrameCheck(); |
|
} |
|
|
|
TEST(RGBD_Odometry_RgbdICP, prepareFrame) |
|
{ |
|
OdometryTest test(OdometryType::RGB_DEPTH, OdometryAlgoType::COMMON, 0.99, 0.99); |
|
test.prepareFrameCheck(); |
|
} |
|
|
|
TEST(RGBD_Odometry_FastICP, prepareFrame) |
|
{ |
|
OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::FAST, 0.99, 0.89, FLT_EPSILON); |
|
test.prepareFrameCheck(); |
|
} |
|
|
|
TEST(RGBD_Odometry_WarpFrame, compareToGold) |
|
{ |
|
//TODO: identity transform |
|
//TODO: finish it |
|
|
|
std::string dataPath = cvtest::TS::ptr()->get_data_path(); |
|
std::string srcDepthFilename = dataPath + "/cv/rgbd/depth.png"; |
|
// The depth was generated using the script at 3d/misc/python/warp_test.py |
|
std::string warpedDepthFilename = dataPath + "/cv/rgbd/warped.png"; |
|
|
|
Mat srcDepth, warpedDepth; |
|
|
|
srcDepth = imread(srcDepthFilename, -1); |
|
if(srcDepth.empty()) |
|
{ |
|
FAIL() << "Depth " << srcDepthFilename.c_str() << "can not be read" << std::endl; |
|
} |
|
|
|
warpedDepth = imread(warpedDepthFilename, -1); |
|
if(warpedDepth.empty()) |
|
{ |
|
FAIL() << "Depth " << warpedDepthFilename.c_str() << "can not be read" << std::endl; |
|
} |
|
|
|
CV_DbgAssert(srcDepth.type() == CV_16UC1); |
|
CV_DbgAssert(warpedDepth.type() == CV_16UC1); |
|
|
|
double fx = 525.0, fy = 525.0, |
|
cx = 319.5, cy = 239.5; |
|
Matx33d K(fx, 0, cx, |
|
0, fy, cy, |
|
0, 0, 1); |
|
cv::Affine3d rt(cv::Vec3d(0.1, 0.2, 0.3), cv::Vec3d(-0.04, 0.05, 0.6)); |
|
|
|
//TODO: check with and without scaling |
|
Mat srcDepthCvt, warpedDepthCvt; |
|
srcDepth.convertTo(srcDepthCvt, CV_32FC1, 1.f/5000.f); |
|
srcDepth = srcDepthCvt; |
|
warpedDepth.convertTo(warpedDepthCvt, CV_32FC1, 1.f/5000.f); |
|
warpedDepth = warpedDepthCvt; |
|
|
|
srcDepth.setTo(std::numeric_limits<float>::quiet_NaN(), srcDepth < FLT_EPSILON); |
|
warpedDepth.setTo(std::numeric_limits<float>::quiet_NaN(), warpedDepth < FLT_EPSILON); |
|
|
|
//TODO: check with and without image |
|
//TODO: check with and without mask |
|
//TODO: check with and without distCoeff |
|
Mat image, mask, distCoeff, dstImage, dstDepth, dstMask; |
|
warpFrame(image, srcDepth, mask, rt.matrix, K, distCoeff, |
|
dstImage, dstDepth, dstMask); |
|
|
|
//TODO: check this norm |
|
double depthDiff = cv::norm(dstDepth, warpedDepth, NORM_L2); |
|
//TODO: find true threshold, maybe based on pixcount |
|
ASSERT_LE(0.1, depthDiff); |
|
} |
|
|
|
}} // namespace
|
|
|