Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
117 lines
3.9 KiB
117 lines
3.9 KiB
#include <opencv2/dnn.hpp> |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/highgui.hpp> |
|
using namespace cv; |
|
using namespace cv::dnn; |
|
|
|
#include <fstream> |
|
#include <iostream> |
|
#include <algorithm> |
|
#include <cstdlib> |
|
using namespace std; |
|
|
|
const size_t network_width = 416; |
|
const size_t network_height = 416; |
|
|
|
const char* about = "This sample uses You only look once (YOLO)-Detector " |
|
"(https://arxiv.org/abs/1612.08242)" |
|
"to detect objects on image\n"; // TODO: link |
|
|
|
const char* params |
|
= "{ help | false | print usage }" |
|
"{ cfg | | model configuration }" |
|
"{ model | | model weights }" |
|
"{ image | | image for detection }" |
|
"{ min_confidence | 0.24 | min confidence }"; |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
cv::CommandLineParser parser(argc, argv, params); |
|
|
|
if (parser.get<bool>("help")) |
|
{ |
|
std::cout << about << std::endl; |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
|
|
String modelConfiguration = parser.get<string>("cfg"); |
|
String modelBinary = parser.get<string>("model"); |
|
|
|
//! [Initialize network] |
|
dnn::Net net = readNetFromDarknet(modelConfiguration, modelBinary); |
|
//! [Initialize network] |
|
|
|
if (net.empty()) |
|
{ |
|
cerr << "Can't load network by using the following files: " << endl; |
|
cerr << "cfg-file: " << modelConfiguration << endl; |
|
cerr << "weights-file: " << modelBinary << endl; |
|
cerr << "Models can be downloaded here:" << endl; |
|
cerr << "https://pjreddie.com/darknet/yolo/" << endl; |
|
exit(-1); |
|
} |
|
|
|
cv::Mat frame = cv::imread(parser.get<string>("image")); |
|
|
|
//! [Resizing without keeping aspect ratio] |
|
cv::Mat resized; |
|
cv::resize(frame, resized, cv::Size(network_width, network_height)); |
|
//! [Resizing without keeping aspect ratio] |
|
|
|
//! [Prepare blob] |
|
Mat inputBlob = blobFromImage(resized, 1 / 255.F); //Convert Mat to batch of images |
|
//! [Prepare blob] |
|
|
|
//! [Set input blob] |
|
net.setInput(inputBlob, "data"); //set the network input |
|
//! [Set input blob] |
|
|
|
//! [Make forward pass] |
|
cv::Mat detectionMat = net.forward("detection_out"); //compute output |
|
//! [Make forward pass] |
|
|
|
|
|
float confidenceThreshold = parser.get<float>("min_confidence"); |
|
for (int i = 0; i < detectionMat.rows; i++) |
|
{ |
|
const int probability_index = 5; |
|
const int probability_size = detectionMat.cols - probability_index; |
|
float *prob_array_ptr = &detectionMat.at<float>(i, probability_index); |
|
|
|
size_t objectClass = std::max_element(prob_array_ptr, prob_array_ptr + probability_size) - prob_array_ptr; |
|
float confidence = detectionMat.at<float>(i, (int)objectClass + probability_index); |
|
|
|
if (confidence > confidenceThreshold) |
|
{ |
|
float x = detectionMat.at<float>(i, 0); |
|
float y = detectionMat.at<float>(i, 1); |
|
float width = detectionMat.at<float>(i, 2); |
|
float height = detectionMat.at<float>(i, 3); |
|
float xLeftBottom = (x - width / 2) * frame.cols; |
|
float yLeftBottom = (y - height / 2) * frame.rows; |
|
float xRightTop = (x + width / 2) * frame.cols; |
|
float yRightTop = (y + height / 2) * frame.rows; |
|
|
|
std::cout << "Class: " << objectClass << std::endl; |
|
std::cout << "Confidence: " << confidence << std::endl; |
|
|
|
std::cout << " " << xLeftBottom |
|
<< " " << yLeftBottom |
|
<< " " << xRightTop |
|
<< " " << yRightTop << std::endl; |
|
|
|
Rect object((int)xLeftBottom, (int)yLeftBottom, |
|
(int)(xRightTop - xLeftBottom), |
|
(int)(yRightTop - yLeftBottom)); |
|
|
|
rectangle(frame, object, Scalar(0, 255, 0)); |
|
} |
|
} |
|
|
|
imshow("detections", frame); |
|
waitKey(); |
|
|
|
return 0; |
|
} // main
|