mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
499 lines
18 KiB
499 lines
18 KiB
Camera Calibration and 3D Reconstruction |
|
======================================== |
|
|
|
.. highlight:: cpp |
|
|
|
|
|
|
|
gpu::StereoBM_GPU |
|
----------------- |
|
.. ocv:class:: gpu::StereoBM_GPU |
|
|
|
Class computing stereo correspondence (disparity map) using the block matching algorithm. :: |
|
|
|
class StereoBM_GPU |
|
{ |
|
public: |
|
enum { BASIC_PRESET = 0, PREFILTER_XSOBEL = 1 }; |
|
|
|
enum { DEFAULT_NDISP = 64, DEFAULT_WINSZ = 19 }; |
|
|
|
StereoBM_GPU(); |
|
StereoBM_GPU(int preset, int ndisparities = DEFAULT_NDISP, |
|
int winSize = DEFAULT_WINSZ); |
|
|
|
void operator() (const GpuMat& left, const GpuMat& right, |
|
GpuMat& disparity, Stream& stream = Stream::Null()); |
|
|
|
static bool checkIfGpuCallReasonable(); |
|
|
|
int preset; |
|
int ndisp; |
|
int winSize; |
|
|
|
float avergeTexThreshold; |
|
|
|
... |
|
}; |
|
|
|
|
|
The class also performs pre- and post-filtering steps: Sobel pre-filtering (if ``PREFILTER_XSOBEL`` flag is set) and low textureness filtering (if ``averageTexThreshols > 0`` ). If ``avergeTexThreshold = 0`` , low textureness filtering is disabled. Otherwise, the disparity is set to 0 in each point ``(x, y)`` , where for the left image |
|
|
|
.. math:: |
|
\sum HorizontalGradiensInWindow(x, y, winSize) < (winSize \cdot winSize) \cdot avergeTexThreshold |
|
|
|
This means that the input left image is low textured. |
|
|
|
|
|
|
|
gpu::StereoBM_GPU::StereoBM_GPU |
|
----------------------------------- |
|
Enables :ocv:class:`gpu::StereoBM_GPU` constructors. |
|
|
|
.. ocv:function:: gpu::StereoBM_GPU::StereoBM_GPU() |
|
|
|
.. ocv:function:: gpu::StereoBM_GPU::StereoBM_GPU(int preset, int ndisparities = DEFAULT_NDISP, int winSize = DEFAULT_WINSZ) |
|
|
|
:param preset: Parameter presetting: |
|
|
|
* **BASIC_PRESET** Basic mode without pre-processing. |
|
|
|
* **PREFILTER_XSOBEL** Sobel pre-filtering mode. |
|
|
|
:param ndisparities: Number of disparities. It must be a multiple of 8 and less or equal to 256. |
|
|
|
:param winSize: Block size. |
|
|
|
|
|
|
|
gpu::StereoBM_GPU::operator () |
|
---------------------------------- |
|
Enables the stereo correspondence operator that finds the disparity for the specified rectified stereo pair. |
|
|
|
.. ocv:function:: void gpu::StereoBM_GPU::operator ()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null()) |
|
|
|
:param left: Left image. Only ``CV_8UC1`` type is supported. |
|
|
|
:param right: Right image with the same size and the same type as the left one. |
|
|
|
:param disparity: Output disparity map. It is a ``CV_8UC1`` image with the same size as the input images. |
|
|
|
:param stream: Stream for the asynchronous version. |
|
|
|
|
|
|
|
gpu::StereoBM_GPU::checkIfGpuCallReasonable |
|
----------------------------------------------- |
|
Uses a heuristic method to estimate whether the current GPU is faster than the CPU in this algorithm. It queries the currently active device. |
|
|
|
.. ocv:function:: bool gpu::StereoBM_GPU::checkIfGpuCallReasonable() |
|
|
|
|
|
|
|
gpu::StereoBeliefPropagation |
|
---------------------------- |
|
.. ocv:class:: gpu::StereoBeliefPropagation |
|
|
|
Class computing stereo correspondence using the belief propagation algorithm. :: |
|
|
|
class StereoBeliefPropagation |
|
{ |
|
public: |
|
enum { DEFAULT_NDISP = 64 }; |
|
enum { DEFAULT_ITERS = 5 }; |
|
enum { DEFAULT_LEVELS = 5 }; |
|
|
|
static void estimateRecommendedParams(int width, int height, |
|
int& ndisp, int& iters, int& levels); |
|
|
|
explicit StereoBeliefPropagation(int ndisp = DEFAULT_NDISP, |
|
int iters = DEFAULT_ITERS, |
|
int levels = DEFAULT_LEVELS, |
|
int msg_type = CV_32F); |
|
StereoBeliefPropagation(int ndisp, int iters, int levels, |
|
float max_data_term, float data_weight, |
|
float max_disc_term, float disc_single_jump, |
|
int msg_type = CV_32F); |
|
|
|
void operator()(const GpuMat& left, const GpuMat& right, |
|
GpuMat& disparity, Stream& stream = Stream::Null()); |
|
void operator()(const GpuMat& data, GpuMat& disparity, Stream& stream = Stream::Null()); |
|
|
|
int ndisp; |
|
|
|
int iters; |
|
int levels; |
|
|
|
float max_data_term; |
|
float data_weight; |
|
float max_disc_term; |
|
float disc_single_jump; |
|
|
|
int msg_type; |
|
|
|
... |
|
}; |
|
|
|
The class implements algorithm described in [Felzenszwalb2006]_ . It can compute own data cost (using a truncated linear model) or use a user-provided data cost. |
|
|
|
.. note:: |
|
|
|
``StereoBeliefPropagation`` requires a lot of memory for message storage: |
|
|
|
.. math:: |
|
|
|
width \_ step \cdot height \cdot ndisp \cdot 4 \cdot (1 + 0.25) |
|
|
|
and for data cost storage: |
|
|
|
.. math:: |
|
|
|
width\_step \cdot height \cdot ndisp \cdot (1 + 0.25 + 0.0625 + \dotsm + \frac{1}{4^{levels}}) |
|
|
|
``width_step`` is the number of bytes in a line including padding. |
|
|
|
|
|
|
|
gpu::StereoBeliefPropagation::StereoBeliefPropagation |
|
--------------------------------------------------------- |
|
Enables the :ocv:class:`gpu::StereoBeliefPropagation` constructors. |
|
|
|
.. ocv:function:: gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp = DEFAULT_NDISP, int iters = DEFAULT_ITERS, int levels = DEFAULT_LEVELS, int msg_type = CV_32F) |
|
|
|
.. ocv:function:: gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp, int iters, int levels, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, int msg_type = CV_32F) |
|
|
|
:param ndisp: Number of disparities. |
|
|
|
:param iters: Number of BP iterations on each level. |
|
|
|
:param levels: Number of levels. |
|
|
|
:param max_data_term: Threshold for data cost truncation. |
|
|
|
:param data_weight: Data weight. |
|
|
|
:param max_disc_term: Threshold for discontinuity truncation. |
|
|
|
:param disc_single_jump: Discontinuity single jump. |
|
|
|
:param msg_type: Type for messages. ``CV_16SC1`` and ``CV_32FC1`` types are supported. |
|
|
|
``StereoBeliefPropagation`` uses a truncated linear model for the data cost and discontinuity terms: |
|
|
|
.. math:: |
|
|
|
DataCost = data \_ weight \cdot \min ( \lvert Img_Left(x,y)-Img_Right(x-d,y) \rvert , max \_ data \_ term) |
|
|
|
.. math:: |
|
|
|
DiscTerm = \min (disc \_ single \_ jump \cdot \lvert f_1-f_2 \rvert , max \_ disc \_ term) |
|
|
|
For more details, see [Felzenszwalb2006]_. |
|
|
|
By default, :ocv:class:`gpu::StereoBeliefPropagation` uses floating-point arithmetics and the ``CV_32FC1`` type for messages. But it can also use fixed-point arithmetics and the ``CV_16SC1`` message type for better performance. To avoid an overflow in this case, the parameters must satisfy the following requirement: |
|
|
|
.. math:: |
|
|
|
10 \cdot 2^{levels-1} \cdot max \_ data \_ term < SHRT \_ MAX |
|
|
|
|
|
|
|
gpu::StereoBeliefPropagation::estimateRecommendedParams |
|
----------------------------------------------------------- |
|
Uses a heuristic method to compute the recommended parameters ( ``ndisp``, ``iters`` and ``levels`` ) for the specified image size ( ``width`` and ``height`` ). |
|
|
|
.. ocv:function:: void gpu::StereoBeliefPropagation::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels) |
|
|
|
|
|
|
|
gpu::StereoBeliefPropagation::operator () |
|
--------------------------------------------- |
|
Enables the stereo correspondence operator that finds the disparity for the specified rectified stereo pair or data cost. |
|
|
|
.. ocv:function:: void gpu::StereoBeliefPropagation::operator ()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null()) |
|
|
|
.. ocv:function:: void gpu::StereoBeliefPropagation::operator ()(const GpuMat& data, GpuMat& disparity, Stream& stream = Stream::Null()) |
|
|
|
:param left: Left image. ``CV_8UC1`` , ``CV_8UC3`` and ``CV_8UC4`` types are supported. |
|
|
|
:param right: Right image with the same size and the same type as the left one. |
|
|
|
:param data: User-specified data cost, a matrix of ``msg_type`` type and ``Size(<image columns>*ndisp, <image rows>)`` size. |
|
|
|
:param disparity: Output disparity map. If ``disparity`` is empty, the output type is ``CV_16SC1`` . Otherwise, the type is retained. |
|
|
|
:param stream: Stream for the asynchronous version. |
|
|
|
|
|
|
|
gpu::StereoConstantSpaceBP |
|
-------------------------- |
|
.. ocv:class:: gpu::StereoConstantSpaceBP |
|
|
|
Class computing stereo correspondence using the constant space belief propagation algorithm. :: |
|
|
|
class StereoConstantSpaceBP |
|
{ |
|
public: |
|
enum { DEFAULT_NDISP = 128 }; |
|
enum { DEFAULT_ITERS = 8 }; |
|
enum { DEFAULT_LEVELS = 4 }; |
|
enum { DEFAULT_NR_PLANE = 4 }; |
|
|
|
static void estimateRecommendedParams(int width, int height, |
|
int& ndisp, int& iters, int& levels, int& nr_plane); |
|
|
|
explicit StereoConstantSpaceBP(int ndisp = DEFAULT_NDISP, |
|
int iters = DEFAULT_ITERS, |
|
int levels = DEFAULT_LEVELS, |
|
int nr_plane = DEFAULT_NR_PLANE, |
|
int msg_type = CV_32F); |
|
StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane, |
|
float max_data_term, float data_weight, |
|
float max_disc_term, float disc_single_jump, |
|
int min_disp_th = 0, |
|
int msg_type = CV_32F); |
|
|
|
void operator()(const GpuMat& left, const GpuMat& right, |
|
GpuMat& disparity, Stream& stream = Stream::Null()); |
|
|
|
int ndisp; |
|
|
|
int iters; |
|
int levels; |
|
|
|
int nr_plane; |
|
|
|
float max_data_term; |
|
float data_weight; |
|
float max_disc_term; |
|
float disc_single_jump; |
|
|
|
int min_disp_th; |
|
|
|
int msg_type; |
|
|
|
bool use_local_init_data_cost; |
|
|
|
... |
|
}; |
|
|
|
|
|
The class implements algorithm described in [Yang2010]_. ``StereoConstantSpaceBP`` supports both local minimum and global minimum data cost initialization algorithms. For more details, see the paper mentioned above. By default, a local algorithm is used. To enable a global algorithm, set ``use_local_init_data_cost`` to ``false`` . |
|
|
|
|
|
|
|
gpu::StereoConstantSpaceBP::StereoConstantSpaceBP |
|
----------------------------------------------------- |
|
Enables the :ocv:class:`gpu::StereoConstantSpaceBP` constructors. |
|
|
|
.. ocv:function:: gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp = DEFAULT_NDISP, int iters = DEFAULT_ITERS, int levels = DEFAULT_LEVELS, int nr_plane = DEFAULT_NR_PLANE, int msg_type = CV_32F) |
|
|
|
.. ocv:function:: gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, int min_disp_th = 0, int msg_type = CV_32F) |
|
|
|
:param ndisp: Number of disparities. |
|
|
|
:param iters: Number of BP iterations on each level. |
|
|
|
:param levels: Number of levels. |
|
|
|
:param nr_plane: Number of disparity levels on the first level. |
|
|
|
:param max_data_term: Truncation of data cost. |
|
|
|
:param data_weight: Data weight. |
|
|
|
:param max_disc_term: Truncation of discontinuity. |
|
|
|
:param disc_single_jump: Discontinuity single jump. |
|
|
|
:param min_disp_th: Minimal disparity threshold. |
|
|
|
:param msg_type: Type for messages. ``CV_16SC1`` and ``CV_32FC1`` types are supported. |
|
|
|
``StereoConstantSpaceBP`` uses a truncated linear model for the data cost and discontinuity terms: |
|
|
|
.. math:: |
|
|
|
DataCost = data \_ weight \cdot \min ( \lvert I_2-I_1 \rvert , max \_ data \_ term) |
|
|
|
.. math:: |
|
|
|
DiscTerm = \min (disc \_ single \_ jump \cdot \lvert f_1-f_2 \rvert , max \_ disc \_ term) |
|
|
|
For more details, see [Yang2010]_. |
|
|
|
By default, ``StereoConstantSpaceBP`` uses floating-point arithmetics and the ``CV_32FC1`` type for messages. But it can also use fixed-point arithmetics and the ``CV_16SC1`` message type for better performance. To avoid an overflow in this case, the parameters must satisfy the following requirement: |
|
|
|
.. math:: |
|
|
|
10 \cdot 2^{levels-1} \cdot max \_ data \_ term < SHRT \_ MAX |
|
|
|
|
|
|
|
gpu::StereoConstantSpaceBP::estimateRecommendedParams |
|
--------------------------------------------------------- |
|
Uses a heuristic method to compute parameters (ndisp, iters, levelsand nrplane) for the specified image size (widthand height). |
|
|
|
.. ocv:function:: void gpu::StereoConstantSpaceBP::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane) |
|
|
|
|
|
|
|
gpu::StereoConstantSpaceBP::operator () |
|
------------------------------------------- |
|
Enables the stereo correspondence operator that finds the disparity for the specified rectified stereo pair. |
|
|
|
.. ocv:function:: void gpu::StereoConstantSpaceBP::operator ()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null()) |
|
|
|
:param left: Left image. ``CV_8UC1`` , ``CV_8UC3`` and ``CV_8UC4`` types are supported. |
|
|
|
:param right: Right image with the same size and the same type as the left one. |
|
|
|
:param disparity: Output disparity map. If ``disparity`` is empty, the output type is ``CV_16SC1`` . Otherwise, the output type is ``disparity.type()`` . |
|
|
|
:param stream: Stream for the asynchronous version. |
|
|
|
|
|
|
|
gpu::DisparityBilateralFilter |
|
----------------------------- |
|
.. ocv:class:: gpu::DisparityBilateralFilter |
|
|
|
Class refining a disparity map using joint bilateral filtering. :: |
|
|
|
class CV_EXPORTS DisparityBilateralFilter |
|
{ |
|
public: |
|
enum { DEFAULT_NDISP = 64 }; |
|
enum { DEFAULT_RADIUS = 3 }; |
|
enum { DEFAULT_ITERS = 1 }; |
|
|
|
explicit DisparityBilateralFilter(int ndisp = DEFAULT_NDISP, |
|
int radius = DEFAULT_RADIUS, int iters = DEFAULT_ITERS); |
|
|
|
DisparityBilateralFilter(int ndisp, int radius, int iters, |
|
float edge_threshold, float max_disc_threshold, |
|
float sigma_range); |
|
|
|
void operator()(const GpuMat& disparity, const GpuMat& image, |
|
GpuMat& dst, Stream& stream = Stream::Null()); |
|
|
|
... |
|
}; |
|
|
|
|
|
The class implements [Yang2010]_ algorithm. |
|
|
|
|
|
|
|
gpu::DisparityBilateralFilter::DisparityBilateralFilter |
|
----------------------------------------------------------- |
|
Enables the :ocv:class:`gpu::DisparityBilateralFilter` constructors. |
|
|
|
.. ocv:function:: gpu::DisparityBilateralFilter::DisparityBilateralFilter(int ndisp = DEFAULT_NDISP, int radius = DEFAULT_RADIUS, int iters = DEFAULT_ITERS) |
|
|
|
.. ocv:function:: gpu::DisparityBilateralFilter::DisparityBilateralFilter(int ndisp, int radius, int iters, float edge_threshold, float max_disc_threshold, float sigma_range) |
|
|
|
:param ndisp: Number of disparities. |
|
|
|
:param radius: Filter radius. |
|
|
|
:param iters: Number of iterations. |
|
|
|
:param edge_threshold: Threshold for edges. |
|
|
|
:param max_disc_threshold: Constant to reject outliers. |
|
|
|
:param sigma_range: Filter range. |
|
|
|
|
|
|
|
gpu::DisparityBilateralFilter::operator () |
|
---------------------------------------------- |
|
Refines a disparity map using joint bilateral filtering. |
|
|
|
.. ocv:function:: void gpu::DisparityBilateralFilter::operator ()(const GpuMat& disparity, const GpuMat& image, GpuMat& dst, Stream& stream = Stream::Null()) |
|
|
|
:param disparity: Input disparity map. ``CV_8UC1`` and ``CV_16SC1`` types are supported. |
|
|
|
:param image: Input image. ``CV_8UC1`` and ``CV_8UC3`` types are supported. |
|
|
|
:param dst: Destination disparity map. It has the same size and type as ``disparity`` . |
|
|
|
:param stream: Stream for the asynchronous version. |
|
|
|
|
|
|
|
gpu::drawColorDisp |
|
---------------------- |
|
Colors a disparity image. |
|
|
|
.. ocv:function:: void gpu::drawColorDisp(const GpuMat& src_disp, GpuMat& dst_disp, int ndisp, Stream& stream = Stream::Null()) |
|
|
|
:param src_disp: Source disparity image. ``CV_8UC1`` and ``CV_16SC1`` types are supported. |
|
|
|
:param dst_disp: Output disparity image. It has the same size as ``src_disp`` . The type is ``CV_8UC4`` in ``BGRA`` format (alpha = 255). |
|
|
|
:param ndisp: Number of disparities. |
|
|
|
:param stream: Stream for the asynchronous version. |
|
|
|
This function draws a colored disparity map by converting disparity values from ``[0..ndisp)`` interval first to ``HSV`` color space (where different disparity values correspond to different hues) and then converting the pixels to ``RGB`` for visualization. |
|
|
|
|
|
|
|
gpu::reprojectImageTo3D |
|
--------------------------- |
|
Reprojects a disparity image to 3D space. |
|
|
|
.. ocv:function:: void gpu::reprojectImageTo3D(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, int dst_cn = 4, Stream& stream = Stream::Null()) |
|
|
|
:param disp: Input disparity image. ``CV_8U`` and ``CV_16S`` types are supported. |
|
|
|
:param xyzw: Output 3- or 4-channel floating-point image of the same size as ``disp`` . Each element of ``xyzw(x,y)`` contains 3D coordinates ``(x,y,z)`` or ``(x,y,z,1)`` of the point ``(x,y)`` , computed from the disparity map. |
|
|
|
:param Q: :math:`4 \times 4` perspective transformation matrix that can be obtained via :ocv:func:`stereoRectify` . |
|
|
|
:param dst_cn: The number of channels for output image. Can be 3 or 4. |
|
|
|
:param stream: Stream for the asynchronous version. |
|
|
|
.. seealso:: :ocv:func:`reprojectImageTo3D` |
|
|
|
|
|
|
|
gpu::solvePnPRansac |
|
------------------- |
|
Finds the object pose from 3D-2D point correspondences. |
|
|
|
.. ocv:function:: void gpu::solvePnPRansac(const Mat& object, const Mat& image, const Mat& camera_mat, const Mat& dist_coef, Mat& rvec, Mat& tvec, bool use_extrinsic_guess=false, int num_iters=100, float max_dist=8.0, int min_inlier_count=100, vector<int>* inliers=NULL) |
|
|
|
:param object: Single-row matrix of object points. |
|
|
|
:param image: Single-row matrix of image points. |
|
|
|
:param camera_mat: 3x3 matrix of intrinsic camera parameters. |
|
|
|
:param dist_coef: Distortion coefficients. See :ocv:func:`undistortPoints` for details. |
|
|
|
:param rvec: Output 3D rotation vector. |
|
|
|
:param tvec: Output 3D translation vector. |
|
|
|
:param use_extrinsic_guess: Flag to indicate that the function must use ``rvec`` and ``tvec`` as an initial transformation guess. It is not supported for now. |
|
|
|
:param num_iters: Maximum number of RANSAC iterations. |
|
|
|
:param max_dist: Euclidean distance threshold to detect whether point is inlier or not. |
|
|
|
:param min_inlier_count: Flag to indicate that the function must stop if greater or equal number of inliers is achieved. It is not supported for now. |
|
|
|
:param inliers: Output vector of inlier indices. |
|
|
|
.. seealso:: :ocv:func:`solvePnPRansac` |
|
|
|
|
|
|
|
.. [Felzenszwalb2006] Pedro F. Felzenszwalb algorithm [Pedro F. Felzenszwalb and Daniel P. Huttenlocher. *Efficient belief propagation for early vision*. International Journal of Computer Vision, 70(1), October 2006 |
|
|
|
.. [Yang2010] Q. Yang, L. Wang, and N. Ahuja. *A constant-space belief propagation algorithm for stereo matching*. In CVPR, 2010.
|
|
|