mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
146 lines
5.6 KiB
146 lines
5.6 KiB
# Import required modules |
|
import cv2 as cv |
|
import math |
|
import argparse |
|
|
|
############ Add argument parser for command line arguments ############ |
|
parser = argparse.ArgumentParser(description='Use this script to run TensorFlow implementation (https://github.com/argman/EAST) of EAST: An Efficient and Accurate Scene Text Detector (https://arxiv.org/abs/1704.03155v2)') |
|
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.') |
|
parser.add_argument('--model', required=True, |
|
help='Path to a binary .pb file of model contains trained weights.') |
|
parser.add_argument('--width', type=int, default=320, |
|
help='Preprocess input image by resizing to a specific width. It should be multiple by 32.') |
|
parser.add_argument('--height',type=int, default=320, |
|
help='Preprocess input image by resizing to a specific height. It should be multiple by 32.') |
|
parser.add_argument('--thr',type=float, default=0.5, |
|
help='Confidence threshold.') |
|
parser.add_argument('--nms',type=float, default=0.4, |
|
help='Non-maximum suppression threshold.') |
|
args = parser.parse_args() |
|
|
|
############ Utility functions ############ |
|
def decode(scores, geometry, scoreThresh): |
|
detections = [] |
|
confidences = [] |
|
|
|
############ CHECK DIMENSIONS AND SHAPES OF geometry AND scores ############ |
|
assert len(scores.shape) == 4, "Incorrect dimensions of scores" |
|
assert len(geometry.shape) == 4, "Incorrect dimensions of geometry" |
|
assert scores.shape[0] == 1, "Invalid dimensions of scores" |
|
assert geometry.shape[0] == 1, "Invalid dimensions of geometry" |
|
assert scores.shape[1] == 1, "Invalid dimensions of scores" |
|
assert geometry.shape[1] == 5, "Invalid dimensions of geometry" |
|
assert scores.shape[2] == geometry.shape[2], "Invalid dimensions of scores and geometry" |
|
assert scores.shape[3] == geometry.shape[3], "Invalid dimensions of scores and geometry" |
|
height = scores.shape[2] |
|
width = scores.shape[3] |
|
for y in range(0, height): |
|
|
|
# Extract data from scores |
|
scoresData = scores[0][0][y] |
|
x0_data = geometry[0][0][y] |
|
x1_data = geometry[0][1][y] |
|
x2_data = geometry[0][2][y] |
|
x3_data = geometry[0][3][y] |
|
anglesData = geometry[0][4][y] |
|
for x in range(0, width): |
|
score = scoresData[x] |
|
|
|
# If score is lower than threshold score, move to next x |
|
if(score < scoreThresh): |
|
continue |
|
|
|
# Calculate offset |
|
offsetX = x * 4.0 |
|
offsetY = y * 4.0 |
|
angle = anglesData[x] |
|
|
|
# Calculate cos and sin of angle |
|
cosA = math.cos(angle) |
|
sinA = math.sin(angle) |
|
h = x0_data[x] + x2_data[x] |
|
w = x1_data[x] + x3_data[x] |
|
|
|
# Calculate offset |
|
offset = ([offsetX + cosA * x1_data[x] + sinA * x2_data[x], offsetY - sinA * x1_data[x] + cosA * x2_data[x]]) |
|
|
|
# Find points for rectangle |
|
p1 = (-sinA * h + offset[0], -cosA * h + offset[1]) |
|
p3 = (-cosA * w + offset[0], sinA * w + offset[1]) |
|
center = (0.5*(p1[0]+p3[0]), 0.5*(p1[1]+p3[1])) |
|
detections.append((center, (w,h), -1*angle * 180.0 / math.pi)) |
|
confidences.append(float(score)) |
|
|
|
# Return detections and confidences |
|
return [detections, confidences] |
|
|
|
def main(): |
|
# Read and store arguments |
|
confThreshold = args.thr |
|
nmsThreshold = args.nms |
|
inpWidth = args.width |
|
inpHeight = args.height |
|
model = args.model |
|
|
|
# Load network |
|
net = cv.dnn.readNet(model) |
|
|
|
# Create a new named window |
|
kWinName = "EAST: An Efficient and Accurate Scene Text Detector" |
|
cv.namedWindow(kWinName, cv.WINDOW_NORMAL) |
|
outNames = [] |
|
outNames.append("feature_fusion/Conv_7/Sigmoid") |
|
outNames.append("feature_fusion/concat_3") |
|
|
|
# Open a video file or an image file or a camera stream |
|
cap = cv.VideoCapture(args.input if args.input else 0) |
|
|
|
while cv.waitKey(1) < 0: |
|
# Read frame |
|
hasFrame, frame = cap.read() |
|
if not hasFrame: |
|
cv.waitKey() |
|
break |
|
|
|
# Get frame height and width |
|
height_ = frame.shape[0] |
|
width_ = frame.shape[1] |
|
rW = width_ / float(inpWidth) |
|
rH = height_ / float(inpHeight) |
|
|
|
# Create a 4D blob from frame. |
|
blob = cv.dnn.blobFromImage(frame, 1.0, (inpWidth, inpHeight), (123.68, 116.78, 103.94), True, False) |
|
|
|
# Run the model |
|
net.setInput(blob) |
|
outs = net.forward(outNames) |
|
t, _ = net.getPerfProfile() |
|
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency()) |
|
|
|
# Get scores and geometry |
|
scores = outs[0] |
|
geometry = outs[1] |
|
[boxes, confidences] = decode(scores, geometry, confThreshold) |
|
|
|
# Apply NMS |
|
indices = cv.dnn.NMSBoxesRotated(boxes, confidences, confThreshold,nmsThreshold) |
|
for i in indices: |
|
# get 4 corners of the rotated rect |
|
vertices = cv.boxPoints(boxes[i[0]]) |
|
# scale the bounding box coordinates based on the respective ratios |
|
for j in range(4): |
|
vertices[j][0] *= rW |
|
vertices[j][1] *= rH |
|
for j in range(4): |
|
p1 = (vertices[j][0], vertices[j][1]) |
|
p2 = (vertices[(j + 1) % 4][0], vertices[(j + 1) % 4][1]) |
|
cv.line(frame, p1, p2, (0, 255, 0), 1) |
|
|
|
# Put efficiency information |
|
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0)) |
|
|
|
# Display the frame |
|
cv.imshow(kWinName,frame) |
|
|
|
if __name__ == "__main__": |
|
main()
|
|
|