mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
433 lines
14 KiB
433 lines
14 KiB
#include <fstream> |
|
#include <sstream> |
|
|
|
#include <opencv2/dnn.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/highgui.hpp> |
|
|
|
#ifdef CV_CXX11 |
|
#include <mutex> |
|
#include <thread> |
|
#include <queue> |
|
#endif |
|
|
|
#include "common.hpp" |
|
|
|
std::string keys = |
|
"{ help h | | Print help message. }" |
|
"{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }" |
|
"{ zoo | models.yml | An optional path to file with preprocessing parameters }" |
|
"{ device | 0 | camera device number. }" |
|
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera. }" |
|
"{ framework f | | Optional name of an origin framework of the model. Detect it automatically if it does not set. }" |
|
"{ classes | | Optional path to a text file with names of classes to label detected objects. }" |
|
"{ thr | .5 | Confidence threshold. }" |
|
"{ nms | .4 | Non-maximum suppression threshold. }" |
|
"{ backend | 0 | Choose one of computation backends: " |
|
"0: automatically (by default), " |
|
"1: Halide language (http://halide-lang.org/), " |
|
"2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), " |
|
"3: OpenCV implementation }" |
|
"{ target | 0 | Choose one of target computation devices: " |
|
"0: CPU target (by default), " |
|
"1: OpenCL, " |
|
"2: OpenCL fp16 (half-float precision), " |
|
"3: VPU }" |
|
"{ async | 0 | Number of asynchronous forwards at the same time. " |
|
"Choose 0 for synchronous mode }"; |
|
|
|
using namespace cv; |
|
using namespace dnn; |
|
|
|
float confThreshold, nmsThreshold; |
|
std::vector<std::string> classes; |
|
|
|
inline void preprocess(const Mat& frame, Net& net, Size inpSize, float scale, |
|
const Scalar& mean, bool swapRB); |
|
|
|
void postprocess(Mat& frame, const std::vector<Mat>& out, Net& net); |
|
|
|
void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame); |
|
|
|
void callback(int pos, void* userdata); |
|
|
|
#ifdef CV_CXX11 |
|
template <typename T> |
|
class QueueFPS : public std::queue<T> |
|
{ |
|
public: |
|
QueueFPS() : counter(0) {} |
|
|
|
void push(const T& entry) |
|
{ |
|
std::lock_guard<std::mutex> lock(mutex); |
|
|
|
std::queue<T>::push(entry); |
|
counter += 1; |
|
if (counter == 1) |
|
{ |
|
// Start counting from a second frame (warmup). |
|
tm.reset(); |
|
tm.start(); |
|
} |
|
} |
|
|
|
T get() |
|
{ |
|
std::lock_guard<std::mutex> lock(mutex); |
|
T entry = this->front(); |
|
this->pop(); |
|
return entry; |
|
} |
|
|
|
float getFPS() |
|
{ |
|
tm.stop(); |
|
double fps = counter / tm.getTimeSec(); |
|
tm.start(); |
|
return static_cast<float>(fps); |
|
} |
|
|
|
void clear() |
|
{ |
|
std::lock_guard<std::mutex> lock(mutex); |
|
while (!this->empty()) |
|
this->pop(); |
|
} |
|
|
|
unsigned int counter; |
|
|
|
private: |
|
TickMeter tm; |
|
std::mutex mutex; |
|
}; |
|
#endif // CV_CXX11 |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
CommandLineParser parser(argc, argv, keys); |
|
|
|
const std::string modelName = parser.get<String>("@alias"); |
|
const std::string zooFile = parser.get<String>("zoo"); |
|
|
|
keys += genPreprocArguments(modelName, zooFile); |
|
|
|
parser = CommandLineParser(argc, argv, keys); |
|
parser.about("Use this script to run object detection deep learning networks using OpenCV."); |
|
if (argc == 1 || parser.has("help")) |
|
{ |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
|
|
confThreshold = parser.get<float>("thr"); |
|
nmsThreshold = parser.get<float>("nms"); |
|
float scale = parser.get<float>("scale"); |
|
Scalar mean = parser.get<Scalar>("mean"); |
|
bool swapRB = parser.get<bool>("rgb"); |
|
int inpWidth = parser.get<int>("width"); |
|
int inpHeight = parser.get<int>("height"); |
|
size_t asyncNumReq = parser.get<int>("async"); |
|
CV_Assert(parser.has("model")); |
|
std::string modelPath = findFile(parser.get<String>("model")); |
|
std::string configPath = findFile(parser.get<String>("config")); |
|
|
|
// Open file with classes names. |
|
if (parser.has("classes")) |
|
{ |
|
std::string file = parser.get<String>("classes"); |
|
std::ifstream ifs(file.c_str()); |
|
if (!ifs.is_open()) |
|
CV_Error(Error::StsError, "File " + file + " not found"); |
|
std::string line; |
|
while (std::getline(ifs, line)) |
|
{ |
|
classes.push_back(line); |
|
} |
|
} |
|
|
|
// Load a model. |
|
Net net = readNet(modelPath, configPath, parser.get<String>("framework")); |
|
net.setPreferableBackend(parser.get<int>("backend")); |
|
net.setPreferableTarget(parser.get<int>("target")); |
|
std::vector<String> outNames = net.getUnconnectedOutLayersNames(); |
|
|
|
// Create a window |
|
static const std::string kWinName = "Deep learning object detection in OpenCV"; |
|
namedWindow(kWinName, WINDOW_NORMAL); |
|
int initialConf = (int)(confThreshold * 100); |
|
createTrackbar("Confidence threshold, %", kWinName, &initialConf, 99, callback); |
|
|
|
// Open a video file or an image file or a camera stream. |
|
VideoCapture cap; |
|
if (parser.has("input")) |
|
cap.open(parser.get<String>("input")); |
|
else |
|
cap.open(parser.get<int>("device")); |
|
|
|
#ifdef CV_CXX11 |
|
bool process = true; |
|
|
|
// Frames capturing thread |
|
QueueFPS<Mat> framesQueue; |
|
std::thread framesThread([&](){ |
|
Mat frame; |
|
while (process) |
|
{ |
|
cap >> frame; |
|
if (!frame.empty()) |
|
framesQueue.push(frame.clone()); |
|
else |
|
break; |
|
} |
|
}); |
|
|
|
// Frames processing thread |
|
QueueFPS<Mat> processedFramesQueue; |
|
QueueFPS<std::vector<Mat> > predictionsQueue; |
|
std::thread processingThread([&](){ |
|
std::queue<AsyncArray> futureOutputs; |
|
Mat blob; |
|
while (process) |
|
{ |
|
// Get a next frame |
|
Mat frame; |
|
{ |
|
if (!framesQueue.empty()) |
|
{ |
|
frame = framesQueue.get(); |
|
if (asyncNumReq) |
|
{ |
|
if (futureOutputs.size() == asyncNumReq) |
|
frame = Mat(); |
|
} |
|
else |
|
framesQueue.clear(); // Skip the rest of frames |
|
} |
|
} |
|
|
|
// Process the frame |
|
if (!frame.empty()) |
|
{ |
|
preprocess(frame, net, Size(inpWidth, inpHeight), scale, mean, swapRB); |
|
processedFramesQueue.push(frame); |
|
|
|
if (asyncNumReq) |
|
{ |
|
futureOutputs.push(net.forwardAsync()); |
|
} |
|
else |
|
{ |
|
std::vector<Mat> outs; |
|
net.forward(outs, outNames); |
|
predictionsQueue.push(outs); |
|
} |
|
} |
|
|
|
while (!futureOutputs.empty() && |
|
futureOutputs.front().wait_for(std::chrono::seconds(0))) |
|
{ |
|
AsyncArray async_out = futureOutputs.front(); |
|
futureOutputs.pop(); |
|
Mat out; |
|
async_out.get(out); |
|
predictionsQueue.push({out}); |
|
} |
|
} |
|
}); |
|
|
|
// Postprocessing and rendering loop |
|
while (waitKey(1) < 0) |
|
{ |
|
if (predictionsQueue.empty()) |
|
continue; |
|
|
|
std::vector<Mat> outs = predictionsQueue.get(); |
|
Mat frame = processedFramesQueue.get(); |
|
|
|
postprocess(frame, outs, net); |
|
|
|
if (predictionsQueue.counter > 1) |
|
{ |
|
std::string label = format("Camera: %.2f FPS", framesQueue.getFPS()); |
|
putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0)); |
|
|
|
label = format("Network: %.2f FPS", predictionsQueue.getFPS()); |
|
putText(frame, label, Point(0, 30), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0)); |
|
|
|
label = format("Skipped frames: %d", framesQueue.counter - predictionsQueue.counter); |
|
putText(frame, label, Point(0, 45), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0)); |
|
} |
|
imshow(kWinName, frame); |
|
} |
|
|
|
process = false; |
|
framesThread.join(); |
|
processingThread.join(); |
|
|
|
#else // CV_CXX11 |
|
if (asyncNumReq) |
|
CV_Error(Error::StsNotImplemented, "Asynchronous forward is supported only with Inference Engine backend."); |
|
|
|
// Process frames. |
|
Mat frame, blob; |
|
while (waitKey(1) < 0) |
|
{ |
|
cap >> frame; |
|
if (frame.empty()) |
|
{ |
|
waitKey(); |
|
break; |
|
} |
|
|
|
preprocess(frame, net, Size(inpWidth, inpHeight), scale, mean, swapRB); |
|
|
|
std::vector<Mat> outs; |
|
net.forward(outs, outNames); |
|
|
|
postprocess(frame, outs, net); |
|
|
|
// Put efficiency information. |
|
std::vector<double> layersTimes; |
|
double freq = getTickFrequency() / 1000; |
|
double t = net.getPerfProfile(layersTimes) / freq; |
|
std::string label = format("Inference time: %.2f ms", t); |
|
putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0)); |
|
|
|
imshow(kWinName, frame); |
|
} |
|
#endif // CV_CXX11 |
|
return 0; |
|
} |
|
|
|
inline void preprocess(const Mat& frame, Net& net, Size inpSize, float scale, |
|
const Scalar& mean, bool swapRB) |
|
{ |
|
static Mat blob; |
|
// Create a 4D blob from a frame. |
|
if (inpSize.width <= 0) inpSize.width = frame.cols; |
|
if (inpSize.height <= 0) inpSize.height = frame.rows; |
|
blobFromImage(frame, blob, 1.0, inpSize, Scalar(), swapRB, false, CV_8U); |
|
|
|
// Run a model. |
|
net.setInput(blob, "", scale, mean); |
|
if (net.getLayer(0)->outputNameToIndex("im_info") != -1) // Faster-RCNN or R-FCN |
|
{ |
|
resize(frame, frame, inpSize); |
|
Mat imInfo = (Mat_<float>(1, 3) << inpSize.height, inpSize.width, 1.6f); |
|
net.setInput(imInfo, "im_info"); |
|
} |
|
} |
|
|
|
void postprocess(Mat& frame, const std::vector<Mat>& outs, Net& net) |
|
{ |
|
static std::vector<int> outLayers = net.getUnconnectedOutLayers(); |
|
static std::string outLayerType = net.getLayer(outLayers[0])->type; |
|
|
|
std::vector<int> classIds; |
|
std::vector<float> confidences; |
|
std::vector<Rect> boxes; |
|
if (outLayerType == "DetectionOutput") |
|
{ |
|
// Network produces output blob with a shape 1x1xNx7 where N is a number of |
|
// detections and an every detection is a vector of values |
|
// [batchId, classId, confidence, left, top, right, bottom] |
|
CV_Assert(outs.size() > 0); |
|
for (size_t k = 0; k < outs.size(); k++) |
|
{ |
|
float* data = (float*)outs[k].data; |
|
for (size_t i = 0; i < outs[k].total(); i += 7) |
|
{ |
|
float confidence = data[i + 2]; |
|
if (confidence > confThreshold) |
|
{ |
|
int left = (int)data[i + 3]; |
|
int top = (int)data[i + 4]; |
|
int right = (int)data[i + 5]; |
|
int bottom = (int)data[i + 6]; |
|
int width = right - left + 1; |
|
int height = bottom - top + 1; |
|
if (width <= 2 || height <= 2) |
|
{ |
|
left = (int)(data[i + 3] * frame.cols); |
|
top = (int)(data[i + 4] * frame.rows); |
|
right = (int)(data[i + 5] * frame.cols); |
|
bottom = (int)(data[i + 6] * frame.rows); |
|
width = right - left + 1; |
|
height = bottom - top + 1; |
|
} |
|
classIds.push_back((int)(data[i + 1]) - 1); // Skip 0th background class id. |
|
boxes.push_back(Rect(left, top, width, height)); |
|
confidences.push_back(confidence); |
|
} |
|
} |
|
} |
|
} |
|
else if (outLayerType == "Region") |
|
{ |
|
for (size_t i = 0; i < outs.size(); ++i) |
|
{ |
|
// Network produces output blob with a shape NxC where N is a number of |
|
// detected objects and C is a number of classes + 4 where the first 4 |
|
// numbers are [center_x, center_y, width, height] |
|
float* data = (float*)outs[i].data; |
|
for (int j = 0; j < outs[i].rows; ++j, data += outs[i].cols) |
|
{ |
|
Mat scores = outs[i].row(j).colRange(5, outs[i].cols); |
|
Point classIdPoint; |
|
double confidence; |
|
minMaxLoc(scores, 0, &confidence, 0, &classIdPoint); |
|
if (confidence > confThreshold) |
|
{ |
|
int centerX = (int)(data[0] * frame.cols); |
|
int centerY = (int)(data[1] * frame.rows); |
|
int width = (int)(data[2] * frame.cols); |
|
int height = (int)(data[3] * frame.rows); |
|
int left = centerX - width / 2; |
|
int top = centerY - height / 2; |
|
|
|
classIds.push_back(classIdPoint.x); |
|
confidences.push_back((float)confidence); |
|
boxes.push_back(Rect(left, top, width, height)); |
|
} |
|
} |
|
} |
|
} |
|
else |
|
CV_Error(Error::StsNotImplemented, "Unknown output layer type: " + outLayerType); |
|
|
|
std::vector<int> indices; |
|
NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices); |
|
for (size_t i = 0; i < indices.size(); ++i) |
|
{ |
|
int idx = indices[i]; |
|
Rect box = boxes[idx]; |
|
drawPred(classIds[idx], confidences[idx], box.x, box.y, |
|
box.x + box.width, box.y + box.height, frame); |
|
} |
|
} |
|
|
|
void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame) |
|
{ |
|
rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 255, 0)); |
|
|
|
std::string label = format("%.2f", conf); |
|
if (!classes.empty()) |
|
{ |
|
CV_Assert(classId < (int)classes.size()); |
|
label = classes[classId] + ": " + label; |
|
} |
|
|
|
int baseLine; |
|
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); |
|
|
|
top = max(top, labelSize.height); |
|
rectangle(frame, Point(left, top - labelSize.height), |
|
Point(left + labelSize.width, top + baseLine), Scalar::all(255), FILLED); |
|
putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.5, Scalar()); |
|
} |
|
|
|
void callback(int pos, void*) |
|
{ |
|
confThreshold = pos * 0.01f; |
|
}
|
|
|