mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
318 lines
9.1 KiB
318 lines
9.1 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include <float.h> |
|
#include <limits.h> |
|
|
|
/* Valery Mosyagin */ |
|
|
|
//#define TRACKLEVMAR |
|
|
|
typedef void (*pointer_LMJac)( const CvMat* src, CvMat* dst ); |
|
typedef void (*pointer_LMFunc)( const CvMat* src, CvMat* dst ); |
|
|
|
/* Optimization using Levenberg-Marquardt */ |
|
void cvLevenbergMarquardtOptimization(pointer_LMJac JacobianFunction, |
|
pointer_LMFunc function, |
|
/*pointer_Err error_function,*/ |
|
CvMat *X0,CvMat *observRes,CvMat *resultX, |
|
int maxIter,double epsilon) |
|
{ |
|
/* This is not sparce method */ |
|
/* Make optimization using */ |
|
/* func - function to compute */ |
|
/* uses function to compute jacobian */ |
|
|
|
/* Allocate memory */ |
|
CvMat *vectX = 0; |
|
CvMat *vectNewX = 0; |
|
CvMat *resFunc = 0; |
|
CvMat *resNewFunc = 0; |
|
CvMat *error = 0; |
|
CvMat *errorNew = 0; |
|
CvMat *Jac = 0; |
|
CvMat *delta = 0; |
|
CvMat *matrJtJ = 0; |
|
CvMat *matrJtJN = 0; |
|
CvMat *matrJt = 0; |
|
CvMat *vectB = 0; |
|
|
|
CV_FUNCNAME( "cvLevenbegrMarquardtOptimization" ); |
|
__BEGIN__; |
|
|
|
|
|
if( JacobianFunction == 0 || function == 0 || X0 == 0 || observRes == 0 || resultX == 0 ) |
|
{ |
|
CV_ERROR( CV_StsNullPtr, "Some of parameters is a NULL pointer" ); |
|
} |
|
|
|
if( !CV_IS_MAT(X0) || !CV_IS_MAT(observRes) || !CV_IS_MAT(resultX) ) |
|
{ |
|
CV_ERROR( CV_StsUnsupportedFormat, "Some of input parameters must be a matrices" ); |
|
} |
|
|
|
|
|
int numVal; |
|
int numFunc; |
|
double valError; |
|
double valNewError; |
|
|
|
numVal = X0->rows; |
|
numFunc = observRes->rows; |
|
|
|
/* test input data */ |
|
if( X0->cols != 1 ) |
|
{ |
|
CV_ERROR( CV_StsUnmatchedSizes, "Number of colomn of vector X0 must be 1" ); |
|
} |
|
|
|
if( observRes->cols != 1 ) |
|
{ |
|
CV_ERROR( CV_StsUnmatchedSizes, "Number of colomn of vector observed rusult must be 1" ); |
|
} |
|
|
|
if( resultX->cols != 1 || resultX->rows != numVal ) |
|
{ |
|
CV_ERROR( CV_StsUnmatchedSizes, "Size of result vector X must be equals to X0" ); |
|
} |
|
|
|
if( maxIter <= 0 ) |
|
{ |
|
CV_ERROR( CV_StsUnmatchedSizes, "Number of maximum iteration must be > 0" ); |
|
} |
|
|
|
if( epsilon < 0 ) |
|
{ |
|
CV_ERROR( CV_StsUnmatchedSizes, "Epsilon must be >= 0" ); |
|
} |
|
|
|
/* copy x0 to current value of x */ |
|
CV_CALL( vectX = cvCreateMat(numVal, 1, CV_64F) ); |
|
CV_CALL( vectNewX = cvCreateMat(numVal, 1, CV_64F) ); |
|
CV_CALL( resFunc = cvCreateMat(numFunc,1, CV_64F) ); |
|
CV_CALL( resNewFunc = cvCreateMat(numFunc,1, CV_64F) ); |
|
CV_CALL( error = cvCreateMat(numFunc,1, CV_64F) ); |
|
CV_CALL( errorNew = cvCreateMat(numFunc,1, CV_64F) ); |
|
CV_CALL( Jac = cvCreateMat(numFunc,numVal, CV_64F) ); |
|
CV_CALL( delta = cvCreateMat(numVal, 1, CV_64F) ); |
|
CV_CALL( matrJtJ = cvCreateMat(numVal, numVal, CV_64F) ); |
|
CV_CALL( matrJtJN = cvCreateMat(numVal, numVal, CV_64F) ); |
|
CV_CALL( matrJt = cvCreateMat(numVal, numFunc,CV_64F) ); |
|
CV_CALL( vectB = cvCreateMat(numVal, 1, CV_64F) ); |
|
|
|
cvCopy(X0,vectX); |
|
|
|
/* ========== Main optimization loop ============ */ |
|
double change; |
|
int currIter; |
|
double alpha; |
|
|
|
change = 1; |
|
currIter = 0; |
|
alpha = 0.001; |
|
|
|
do { |
|
|
|
/* Compute value of function */ |
|
function(vectX,resFunc); |
|
/* Print result of function to file */ |
|
|
|
/* Compute error */ |
|
cvSub(observRes,resFunc,error); |
|
|
|
//valError = error_function(observRes,resFunc); |
|
/* Need to use new version of computing error (norm) */ |
|
valError = cvNorm(observRes,resFunc); |
|
|
|
/* Compute Jacobian for given point vectX */ |
|
JacobianFunction(vectX,Jac); |
|
|
|
/* Define optimal delta for J'*J*delta=J'*error */ |
|
/* compute J'J */ |
|
cvMulTransposed(Jac,matrJtJ,1); |
|
|
|
cvCopy(matrJtJ,matrJtJN); |
|
|
|
/* compute J'*error */ |
|
cvTranspose(Jac,matrJt); |
|
cvmMul(matrJt,error,vectB); |
|
|
|
|
|
/* Solve normal equation for given alpha and Jacobian */ |
|
do |
|
{ |
|
/* Increase diagonal elements by alpha */ |
|
for( int i = 0; i < numVal; i++ ) |
|
{ |
|
double val; |
|
val = cvmGet(matrJtJ,i,i); |
|
cvmSet(matrJtJN,i,i,(1+alpha)*val); |
|
} |
|
|
|
/* Solve system to define delta */ |
|
cvSolve(matrJtJN,vectB,delta,CV_SVD); |
|
|
|
/* We know delta and we can define new value of vector X */ |
|
cvAdd(vectX,delta,vectNewX); |
|
|
|
/* Compute result of function for new vector X */ |
|
function(vectNewX,resNewFunc); |
|
cvSub(observRes,resNewFunc,errorNew); |
|
|
|
valNewError = cvNorm(observRes,resNewFunc); |
|
|
|
currIter++; |
|
|
|
if( valNewError < valError ) |
|
{/* accept new value */ |
|
valError = valNewError; |
|
|
|
/* Compute relative change of required parameter vectorX. change = norm(curr-prev) / norm(curr) ) */ |
|
change = cvNorm(vectX, vectNewX, CV_RELATIVE_L2); |
|
|
|
alpha /= 10; |
|
cvCopy(vectNewX,vectX); |
|
break; |
|
} |
|
else |
|
{ |
|
alpha *= 10; |
|
} |
|
|
|
} while ( currIter < maxIter ); |
|
/* new value of X and alpha were accepted */ |
|
|
|
} while ( change > epsilon && currIter < maxIter ); |
|
|
|
|
|
/* result was computed */ |
|
cvCopy(vectX,resultX); |
|
|
|
__END__; |
|
|
|
cvReleaseMat(&vectX); |
|
cvReleaseMat(&vectNewX); |
|
cvReleaseMat(&resFunc); |
|
cvReleaseMat(&resNewFunc); |
|
cvReleaseMat(&error); |
|
cvReleaseMat(&errorNew); |
|
cvReleaseMat(&Jac); |
|
cvReleaseMat(&delta); |
|
cvReleaseMat(&matrJtJ); |
|
cvReleaseMat(&matrJtJN); |
|
cvReleaseMat(&matrJt); |
|
cvReleaseMat(&vectB); |
|
|
|
return; |
|
} |
|
|
|
/*------------------------------------------------------------------------------*/ |
|
#if 0 |
|
//tests |
|
void Jac_Func2(CvMat *vectX,CvMat *Jac) |
|
{ |
|
double x = cvmGet(vectX,0,0); |
|
double y = cvmGet(vectX,1,0); |
|
cvmSet(Jac,0,0,2*(x-2)); |
|
cvmSet(Jac,0,1,2*(y+3)); |
|
|
|
cvmSet(Jac,1,0,1); |
|
cvmSet(Jac,1,1,1); |
|
return; |
|
} |
|
|
|
void Res_Func2(CvMat *vectX,CvMat *res) |
|
{ |
|
double x = cvmGet(vectX,0,0); |
|
double y = cvmGet(vectX,1,0); |
|
cvmSet(res,0,0,(x-2)*(x-2)+(y+3)*(y+3)); |
|
cvmSet(res,1,0,x+y); |
|
|
|
return; |
|
} |
|
|
|
|
|
double Err_Func2(CvMat *obs,CvMat *res) |
|
{ |
|
CvMat *tmp; |
|
tmp = cvCreateMat(obs->rows,1,CV_64F); |
|
cvSub(obs,res,tmp); |
|
|
|
double e; |
|
e = cvNorm(tmp); |
|
|
|
return e; |
|
} |
|
|
|
|
|
void TestOptimX2Y2() |
|
{ |
|
CvMat vectX0; |
|
double vectX0_dat[2]; |
|
vectX0 = cvMat(2,1,CV_64F,vectX0_dat); |
|
vectX0_dat[0] = 5; |
|
vectX0_dat[1] = -7; |
|
|
|
CvMat observRes; |
|
double observRes_dat[2]; |
|
observRes = cvMat(2,1,CV_64F,observRes_dat); |
|
observRes_dat[0] = 0; |
|
observRes_dat[1] = -1; |
|
observRes_dat[0] = 0; |
|
observRes_dat[1] = -1.2; |
|
|
|
CvMat optimX; |
|
double optimX_dat[2]; |
|
optimX = cvMat(2,1,CV_64F,optimX_dat); |
|
|
|
|
|
LevenbegrMarquardtOptimization( Jac_Func2, Res_Func2, Err_Func2, |
|
&vectX0,&observRes,&optimX,100,0.000001); |
|
|
|
return; |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
|