mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
176 lines
5.7 KiB
176 lines
5.7 KiB
#!/usr/bin/env python |
|
|
|
''' |
|
Feature-based image matching sample. |
|
|
|
USAGE |
|
find_obj.py [--feature=<sift|surf|orb>[-flann]] [ <image1> <image2> ] |
|
|
|
--feature - Feature to use. Can be sift, surf of orb. Append '-flann' to feature name |
|
to use Flann-based matcher instead bruteforce. |
|
|
|
Press left mouse button on a feature point to see its matching point. |
|
''' |
|
|
|
import numpy as np |
|
import cv2 |
|
from common import anorm, getsize |
|
|
|
FLANN_INDEX_KDTREE = 1 # bug: flann enums are missing |
|
FLANN_INDEX_LSH = 6 |
|
|
|
|
|
def init_feature(name): |
|
chunks = name.split('-') |
|
if chunks[0] == 'sift': |
|
detector = cv2.SIFT() |
|
norm = cv2.NORM_L2 |
|
elif chunks[0] == 'surf': |
|
detector = cv2.SURF(800) |
|
norm = cv2.NORM_L2 |
|
elif chunks[0] == 'orb': |
|
detector = cv2.ORB(400) |
|
norm = cv2.NORM_HAMMING |
|
else: |
|
return None, None |
|
if 'flann' in chunks: |
|
if norm == cv2.NORM_L2: |
|
flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) |
|
else: |
|
flann_params= dict(algorithm = FLANN_INDEX_LSH, |
|
table_number = 6, # 12 |
|
key_size = 12, # 20 |
|
multi_probe_level = 1) #2 |
|
matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329) |
|
else: |
|
matcher = cv2.BFMatcher(norm) |
|
return detector, matcher |
|
|
|
|
|
def filter_matches(kp1, kp2, matches, ratio = 0.75): |
|
mkp1, mkp2 = [], [] |
|
for m in matches: |
|
if len(m) == 2 and m[0].distance < m[1].distance * ratio: |
|
m = m[0] |
|
mkp1.append( kp1[m.queryIdx] ) |
|
mkp2.append( kp2[m.trainIdx] ) |
|
p1 = np.float32([kp.pt for kp in mkp1]) |
|
p2 = np.float32([kp.pt for kp in mkp2]) |
|
kp_pairs = zip(mkp1, mkp2) |
|
return p1, p2, kp_pairs |
|
|
|
def explore_match(win, img1, img2, kp_pairs, status = None, H = None): |
|
h1, w1 = img1.shape[:2] |
|
h2, w2 = img2.shape[:2] |
|
vis = np.zeros((max(h1, h2), w1+w2), np.uint8) |
|
vis[:h1, :w1] = img1 |
|
vis[:h2, w1:w1+w2] = img2 |
|
vis = cv2.cvtColor(vis, cv2.COLOR_GRAY2BGR) |
|
|
|
if H is not None: |
|
corners = np.float32([[0, 0], [w1, 0], [w1, h1], [0, h1]]) |
|
corners = np.int32( cv2.perspectiveTransform(corners.reshape(1, -1, 2), H).reshape(-1, 2) + (w1, 0) ) |
|
cv2.polylines(vis, [corners], True, (255, 255, 255)) |
|
|
|
if status is None: |
|
status = np.ones(len(kp_pairs), np.bool_) |
|
p1 = np.int32([kpp[0].pt for kpp in kp_pairs]) |
|
p2 = np.int32([kpp[1].pt for kpp in kp_pairs]) + (w1, 0) |
|
|
|
green = (0, 255, 0) |
|
red = (0, 0, 255) |
|
white = (255, 255, 255) |
|
kp_color = (51, 103, 236) |
|
for (x1, y1), (x2, y2), inlier in zip(p1, p2, status): |
|
if inlier: |
|
col = green |
|
cv2.circle(vis, (x1, y1), 2, col, -1) |
|
cv2.circle(vis, (x2, y2), 2, col, -1) |
|
else: |
|
col = red |
|
r = 2 |
|
thickness = 3 |
|
cv2.line(vis, (x1-r, y1-r), (x1+r, y1+r), col, thickness) |
|
cv2.line(vis, (x1-r, y1+r), (x1+r, y1-r), col, thickness) |
|
cv2.line(vis, (x2-r, y2-r), (x2+r, y2+r), col, thickness) |
|
cv2.line(vis, (x2-r, y2+r), (x2+r, y2-r), col, thickness) |
|
vis0 = vis.copy() |
|
for (x1, y1), (x2, y2), inlier in zip(p1, p2, status): |
|
if inlier: |
|
cv2.line(vis, (x1, y1), (x2, y2), green) |
|
|
|
cv2.imshow(win, vis) |
|
def onmouse(event, x, y, flags, param): |
|
cur_vis = vis |
|
if flags & cv2.EVENT_FLAG_LBUTTON: |
|
cur_vis = vis0.copy() |
|
r = 8 |
|
m = (anorm(p1 - (x, y)) < r) | (anorm(p2 - (x, y)) < r) |
|
idxs = np.where(m)[0] |
|
kp1s, kp2s = [], [] |
|
for i in idxs: |
|
(x1, y1), (x2, y2) = p1[i], p2[i] |
|
col = (red, green)[status[i]] |
|
cv2.line(cur_vis, (x1, y1), (x2, y2), col) |
|
kp1, kp2 = kp_pairs[i] |
|
kp1s.append(kp1) |
|
kp2s.append(kp2) |
|
cur_vis = cv2.drawKeypoints(cur_vis, kp1s, flags=4, color=kp_color) |
|
cur_vis[:,w1:] = cv2.drawKeypoints(cur_vis[:,w1:], kp2s, flags=4, color=kp_color) |
|
|
|
cv2.imshow(win, cur_vis) |
|
cv2.setMouseCallback(win, onmouse) |
|
return vis |
|
|
|
|
|
if __name__ == '__main__': |
|
print __doc__ |
|
|
|
import sys, getopt |
|
opts, args = getopt.getopt(sys.argv[1:], '', ['feature=']) |
|
opts = dict(opts) |
|
feature_name = opts.get('--feature', 'sift') |
|
try: |
|
fn1, fn2 = args |
|
except: |
|
fn1 = '../c/box.png' |
|
fn2 = '../c/box_in_scene.png' |
|
|
|
img1 = cv2.imread(fn1, 0) |
|
img2 = cv2.imread(fn2, 0) |
|
detector, matcher = init_feature(feature_name) |
|
|
|
if img1 is None: |
|
print 'Failed to load fn1:', fn1 |
|
sys.exit(1) |
|
|
|
if img2 is None: |
|
print 'Failed to load fn2:', fn2 |
|
sys.exit(1) |
|
|
|
if detector is None: |
|
print 'unknown feature:', feature_name |
|
sys.exit(1) |
|
|
|
print 'using', feature_name |
|
|
|
kp1, desc1 = detector.detectAndCompute(img1, None) |
|
kp2, desc2 = detector.detectAndCompute(img2, None) |
|
print 'img1 - %d features, img2 - %d features' % (len(kp1), len(kp2)) |
|
|
|
def match_and_draw(win): |
|
print 'matching...' |
|
raw_matches = matcher.knnMatch(desc1, trainDescriptors = desc2, k = 2) #2 |
|
p1, p2, kp_pairs = filter_matches(kp1, kp2, raw_matches) |
|
if len(p1) >= 4: |
|
H, status = cv2.findHomography(p1, p2, cv2.RANSAC, 5.0) |
|
print '%d / %d inliers/matched' % (np.sum(status), len(status)) |
|
else: |
|
H, status = None, None |
|
print '%d matches found, not enough for homography estimation' % len(p1) |
|
|
|
vis = explore_match(win, img1, img2, kp_pairs, status, H) |
|
|
|
match_and_draw('find_obj') |
|
cv2.waitKey() |
|
cv2.destroyAllWindows()
|
|
|