mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
155 lines
5.8 KiB
155 lines
5.8 KiB
/*********************************************************************** |
|
* Software License Agreement (BSD License) |
|
* |
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. |
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
*************************************************************************/ |
|
|
|
|
|
#ifndef OPENCV_FLANN_ALL_INDICES_H_ |
|
#define OPENCV_FLANN_ALL_INDICES_H_ |
|
|
|
#include "general.h" |
|
|
|
#include "nn_index.h" |
|
#include "kdtree_index.h" |
|
#include "kdtree_single_index.h" |
|
#include "kmeans_index.h" |
|
#include "composite_index.h" |
|
#include "linear_index.h" |
|
#include "hierarchical_clustering_index.h" |
|
#include "lsh_index.h" |
|
#include "autotuned_index.h" |
|
|
|
|
|
namespace cvflann |
|
{ |
|
|
|
template<typename KDTreeCapability, typename VectorSpace, typename Distance> |
|
struct index_creator |
|
{ |
|
static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance) |
|
{ |
|
flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm"); |
|
|
|
NNIndex<Distance>* nnIndex; |
|
switch (index_type) { |
|
case FLANN_INDEX_LINEAR: |
|
nnIndex = new LinearIndex<Distance>(dataset, params, distance); |
|
break; |
|
case FLANN_INDEX_KDTREE_SINGLE: |
|
nnIndex = new KDTreeSingleIndex<Distance>(dataset, params, distance); |
|
break; |
|
case FLANN_INDEX_KDTREE: |
|
nnIndex = new KDTreeIndex<Distance>(dataset, params, distance); |
|
break; |
|
case FLANN_INDEX_KMEANS: |
|
nnIndex = new KMeansIndex<Distance>(dataset, params, distance); |
|
break; |
|
case FLANN_INDEX_COMPOSITE: |
|
nnIndex = new CompositeIndex<Distance>(dataset, params, distance); |
|
break; |
|
case FLANN_INDEX_AUTOTUNED: |
|
nnIndex = new AutotunedIndex<Distance>(dataset, params, distance); |
|
break; |
|
case FLANN_INDEX_HIERARCHICAL: |
|
nnIndex = new HierarchicalClusteringIndex<Distance>(dataset, params, distance); |
|
break; |
|
case FLANN_INDEX_LSH: |
|
nnIndex = new LshIndex<Distance>(dataset, params, distance); |
|
break; |
|
default: |
|
throw FLANNException("Unknown index type"); |
|
} |
|
|
|
return nnIndex; |
|
} |
|
}; |
|
|
|
template<typename VectorSpace, typename Distance> |
|
struct index_creator<False,VectorSpace,Distance> |
|
{ |
|
static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance) |
|
{ |
|
flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm"); |
|
|
|
NNIndex<Distance>* nnIndex; |
|
switch (index_type) { |
|
case FLANN_INDEX_LINEAR: |
|
nnIndex = new LinearIndex<Distance>(dataset, params, distance); |
|
break; |
|
case FLANN_INDEX_KMEANS: |
|
nnIndex = new KMeansIndex<Distance>(dataset, params, distance); |
|
break; |
|
case FLANN_INDEX_HIERARCHICAL: |
|
nnIndex = new HierarchicalClusteringIndex<Distance>(dataset, params, distance); |
|
break; |
|
case FLANN_INDEX_LSH: |
|
nnIndex = new LshIndex<Distance>(dataset, params, distance); |
|
break; |
|
default: |
|
throw FLANNException("Unknown index type"); |
|
} |
|
|
|
return nnIndex; |
|
} |
|
}; |
|
|
|
template<typename Distance> |
|
struct index_creator<False,False,Distance> |
|
{ |
|
static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance) |
|
{ |
|
flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm"); |
|
|
|
NNIndex<Distance>* nnIndex; |
|
switch (index_type) { |
|
case FLANN_INDEX_LINEAR: |
|
nnIndex = new LinearIndex<Distance>(dataset, params, distance); |
|
break; |
|
case FLANN_INDEX_HIERARCHICAL: |
|
nnIndex = new HierarchicalClusteringIndex<Distance>(dataset, params, distance); |
|
break; |
|
case FLANN_INDEX_LSH: |
|
nnIndex = new LshIndex<Distance>(dataset, params, distance); |
|
break; |
|
default: |
|
throw FLANNException("Unknown index type"); |
|
} |
|
|
|
return nnIndex; |
|
} |
|
}; |
|
|
|
template<typename Distance> |
|
NNIndex<Distance>* create_index_by_type(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance) |
|
{ |
|
return index_creator<typename Distance::is_kdtree_distance, |
|
typename Distance::is_vector_space_distance, |
|
Distance>::create(dataset, params,distance); |
|
} |
|
|
|
} |
|
|
|
#endif /* OPENCV_FLANN_ALL_INDICES_H_ */
|
|
|