Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

304 lines
12 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include "net_impl.hpp"
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
// FIXIT drop from inference API
static
void getQuantizationParams(const Mat& src, std::vector<float>& scales, std::vector<int>& zeropoints)
{
const int qmin = -128; // INT8_MIN
const int qmax = 127; // INT8_MAX
double rmin, rmax, sc, zp;
cv::minMaxIdx(src, &rmin, &rmax);
// 0 must be present in the range [rmin, rmax]
rmin = std::min(rmin, 0.0);
rmax = std::max(rmax, 0.0);
sc = (rmax == rmin) ? 1.0 : (rmax - rmin)/(qmax - qmin);
zp = qmin - (rmin/sc);
scales.push_back((float)sc);
zeropoints.push_back((int)std::round(zp));
}
// FIXIT drop from inference API
Net Net::Impl::quantize(Net& net, InputArrayOfArrays calibData, int inputsDtype, int outputsDtype, bool perChannel)
{
// Net can be quantized only once.
if (netWasQuantized)
CV_Error(Error::StsBadArg, "Cannot quantize a quantized net");
CV_CheckType(inputsDtype, inputsDtype == CV_32F || inputsDtype == CV_8S, "Input depth should be CV_32F or CV_8S");
CV_CheckType(outputsDtype, outputsDtype == CV_32F || outputsDtype == CV_8S, "Output depth should be CV_32F or CV_8S");
bool originalFusion = fusion;
int prefBackend = preferableBackend;
int prefTarget = preferableTarget;
// Disable fusions and use CPU backend to quantize net
// FIXIT: we should not modify original network!
setPreferableBackend(net, DNN_BACKEND_OPENCV);
setPreferableTarget(DNN_TARGET_CPU);
enableFusion(false);
enableWinograd(false);
if (calibData.isMat())
{
setInput(calibData.getMat(), /*name=*/"", /*scalefactor=*/1.0, /*mean=*/Scalar());
}
else if (calibData.isMatVector())
{
std::vector<Mat> calibDataVec;
calibData.getMatVector(calibDataVec);
std::vector<String> inpNames = netInputLayer->outNames;
CV_CheckEQ(calibDataVec.size(), inpNames.size(), "Calibration data size should be equal to number of inputs");
for (int i = 0; i < calibDataVec.size(); i++)
setInput(calibDataVec[i], inpNames[i], /*scalefactor=*/1.0, /*mean=*/Scalar());
}
std::vector<String> outNames = getUnconnectedOutLayersNames();
std::vector<LayerPin> pins;
for (int i = 0; i < outNames.size(); i++)
pins.push_back(getPinByAlias(outNames[i]));
setUpNet(pins);
// Compute scales and zeropoints for all the layers
std::vector<std::vector<float> > scales;
std::vector<std::vector<int> > zeropoints;
for (Impl::MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); it++)
{
LayerData& ld = it->second;
if (!ld.skip)
{
Ptr<Layer> layer = ld.layerInstance;
std::vector<Mat> inps(ld.inputBlobs.size());
for (int i = 0; i < ld.inputBlobs.size(); ++i)
inps[i] = *ld.inputBlobs[i];
layer->forward(inps, ld.outputBlobs, ld.internals);
}
std::vector<float> sc;
std::vector<int> zp;
if (ld.type == "TanH")
{
sc.push_back(1.f/128);
zp.push_back(0);
}
else if (ld.type == "Sigmoid" || ld.type == "Softmax" || ld.type == "SoftMax")
{
if (ld.params.get<bool>("log_softmax", false))
{
sc.push_back(16.f/256);
zp.push_back(127);
}
else
{
sc.push_back(1.f/256);
zp.push_back(-128);
}
}
else if (ld.type == "Split" || ld.type == "Slice" || ld.type == "Crop")
{
std::vector<float> inp_sc; std::vector<int> inp_zp;
getQuantizationParams(*ld.inputBlobs[0], inp_sc, inp_zp);
sc.assign(ld.outputBlobs.size(), inp_sc[0]);
zp.assign(ld.outputBlobs.size(), inp_zp[0]);
}
else
{
for (int i = 0; i < ld.outputBlobs.size(); i++)
getQuantizationParams(ld.outputBlobs[i], sc, zp);
}
scales.push_back(sc);
zeropoints.push_back(zp);
}
// For some layers, the input and output scales/zeropoints must be equal so that rescaling of inputs
// is not needed during quantized inference. We start from the last layer and modify the layer's input scales/zeropoints
// TODO : Need a different approach. Current solution fails when 2 such layers have the same input layer
for (Impl::MapIdToLayerData::reverse_iterator it = layers.rbegin(); it != layers.rend(); ++it)
{
LayerData& ld = it->second;
// Layers with multiple outputs. Number of outputs is equal to number of inputs
if (ld.type == "Blank" || ld.type == "Dropout" || ld.type == "Identity" || ld.type == "Silence" ||
ld.type == "Flatten" || ld.type == "Padding" || ld.type == "Permute" || ld.type == "Reshape" ||
ld.type == "ReLU6" || ld.type == "Reorg" || ld.type == "ShuffleChannel" || ld.type == "Resize" ||
(ld.type == "ReLU" && !ld.params.get<float>("negative_slope", 0.f)) || /* ReLU with negative slope 0 */
(ld.type == "Reduce" && (toLowerCase(ld.params.get<String>("reduce")) == "max" ||
toLowerCase(ld.params.get<String>("reduce")) == "min")))
{
for (int i = 0; i < ld.outputBlobs.size(); i++)
{
LayerPin &pin = ld.inputBlobsId[i];
scales[pin.lid][pin.oid] = scales[ld.id][i];
zeropoints[pin.lid][pin.oid] = zeropoints[ld.id][i];
}
}
// Layers with multiple inputs and single output.
else if ((ld.type == "Pooling" && toLowerCase(ld.params.get<String>("pool", "max")) == "max") /* Max Pooling */ ||
(ld.type == "Eltwise" && toLowerCase(ld.params.get<String>("operation", "sum")) == "max") /* Elementwise max */ ||
ld.type == "Concat")
{
for (int i = 0; i < ld.inputBlobsId.size(); i++)
{
LayerPin &pin = ld.inputBlobsId[i];
scales[pin.lid][pin.oid] = scales[ld.id][0];
zeropoints[pin.lid][pin.oid] = zeropoints[ld.id][0];
}
}
}
// Create a new Net and add quantized layers to it.
Net dstNet_;
Net::Impl& dstNet = *(dstNet_.impl);
dstNet.netWasQuantized = true;
dstNet.setInputsNames(netInputLayer->outNames);
dstNet.setPreferableBackend(dstNet_, prefBackend);
dstNet.setPreferableTarget(prefTarget);
dstNet.enableFusion(originalFusion);
for (Impl::MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); it++)
{
LayerData ld = it->second;
if (ld.id == 0)
{
LayerData &quantInpLd = dstNet.layers[0];
quantInpLd.dtype = inputsDtype;
quantInpLd.params.set("scales", DictValue::arrayReal(scales[0].data(), scales[0].size()));
quantInpLd.params.set("zeropoints", DictValue::arrayInt(zeropoints[0].data(), zeropoints[0].size()));
continue;
}
std::vector<LayerPin> inpPins = ld.inputBlobsId;
// Fill input and output scales/zeropoints for the layer
std::vector<std::vector<float> > inp_out_sc(2);
std::vector<std::vector<int> > inp_out_zp(2);
for (int i = 0; i < inpPins.size(); i++)
{
LayerPin &pin = inpPins[i];
inp_out_sc[0].push_back(scales[pin.lid][pin.oid]);
inp_out_zp[0].push_back(zeropoints[pin.lid][pin.oid]);
}
inp_out_sc[1] = scales[ld.id];
inp_out_zp[1] = zeropoints[ld.id];
// Set the quantization type, per-tensor quantize or per-channel quantize.
// Especially for Convolution layer and Fully connection layer.
ld.params.set("per_channel", perChannel);
// Quantize layer
Ptr<Layer> layer = ld.layerInstance;
if (layer->tryQuantize(inp_out_sc, inp_out_zp, ld.params))
{
ld.type += "Int8";
ld.dtype = CV_8S;
}
ld.params.set("scales", DictValue::arrayReal(inp_out_sc[1].data(), inp_out_sc[1].size()));
ld.params.set("zeropoints", DictValue::arrayInt(inp_out_zp[1].data(), inp_out_zp[1].size()));
// Check and add quantize/dequantize node before layer
for (int i = 0; i < inpPins.size(); i++)
{
LayerPin &pin = inpPins[i];
LayerData &inpLd = dstNet.getLayerData(getLayerName(pin.lid));
pin.lid = inpLd.id;
if (inpLd.dtype != ld.dtype)
{
String layerName = (inpLd.dtype == CV_32F && ld.dtype == CV_8S) ? cv::format("quantize/%s/%d", inpLd.name.c_str(), pin.oid)
: cv::format("dequantize/%s/%d", inpLd.name.c_str(), pin.oid);
// Check if quantize/dequantize node for the input layer already exists
if (dstNet.getLayerId(layerName) >= 0)
{
pin.lid = dstNet.getLayerId(layerName);
pin.oid = 0;
}
else
{
LayerParams lp;
lp.set("scales", inp_out_sc[0][i]);
lp.set("zeropoints", inp_out_zp[0][i]);
lp.name = layerName;
lp.type = (inpLd.dtype == CV_32F && ld.dtype == CV_8S) ? "Quantize" : "Dequantize";
int newLid = dstNet.addLayer(lp.name, lp.type, ld.dtype, lp);
dstNet.connect(pin.lid, pin.oid, newLid, 0);
pin.lid = newLid; pin.oid = 0;
}
}
}
// Add quantized layer to Net and connect to its inputs.
int newLid = dstNet.addLayer(ld.name, ld.type, ld.dtype, ld.params);
for( int i = 0; i < inpPins.size(); i++ )
dstNet.connect(inpPins[i].lid, inpPins[i].oid, newLid, i);
// If the layer is a output layer, add quantize/dequantize node after it based on output's data type.
if (ld.requiredOutputs.size() == 0 && ld.dtype != outputsDtype)
{
LayerParams lp;
lp.set("scales", inp_out_sc[1][0]);
lp.set("zeropoints", inp_out_zp[1][0]);
lp.name = ((ld.dtype == CV_32F && outputsDtype == CV_8S) ? "quantize/" : "dequantize/") + ld.name;
lp.type = (ld.dtype == CV_32F && outputsDtype == CV_8S) ? "Quantize" : "Dequantize";
dstNet.addLayerToPrev(lp.name, lp.type, outputsDtype, lp);
}
}
// Restore FP32 Net's backend, target and fusion
setPreferableBackend(net, prefBackend);
setPreferableTarget(prefTarget);
enableFusion(originalFusion);
return dstNet_;
}
// FIXIT drop from inference API
void Net::Impl::getInputDetails(std::vector<float>& scales, std::vector<int>& zeropoints) /*const*/
{
if (!netWasQuantized)
CV_Error(Error::StsBadFunc, "Net isn't quantized");
LayerParams &lp = layers[0].params;
DictValue sc = lp.get("scales");
DictValue zp = lp.get("zeropoints");
for (int i = 0; i < sc.size(); i++)
{
scales.push_back(sc.get<float>(i));
zeropoints.push_back(zp.get<int>(i));
}
}
// FIXIT drop from inference API
void Net::Impl::getOutputDetails(std::vector<float>& scales, std::vector<int>& zeropoints) /*const*/
{
if (!netWasQuantized)
CV_Error(Error::StsBadFunc, "Net isn't quantized");
std::vector<int> outLayerIds = getUnconnectedOutLayers();
for (auto &lid : outLayerIds)
{
LayerParams &lp = layers[lid].params;
DictValue sc = lp.get("scales");
DictValue zp = lp.get("zeropoints");
for (int i = 0; i < sc.size(); i++)
{
scales.push_back(sc.get<float>(i));
zeropoints.push_back(zp.get<int>(i));
}
}
}
CV__DNN_INLINE_NS_END
}} // namespace cv::dnn