Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
304 lines
12 KiB
304 lines
12 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
#include "precomp.hpp" |
|
|
|
#include "net_impl.hpp" |
|
|
|
namespace cv { |
|
namespace dnn { |
|
CV__DNN_INLINE_NS_BEGIN |
|
|
|
|
|
// FIXIT drop from inference API |
|
static |
|
void getQuantizationParams(const Mat& src, std::vector<float>& scales, std::vector<int>& zeropoints) |
|
{ |
|
const int qmin = -128; // INT8_MIN |
|
const int qmax = 127; // INT8_MAX |
|
|
|
double rmin, rmax, sc, zp; |
|
cv::minMaxIdx(src, &rmin, &rmax); |
|
|
|
// 0 must be present in the range [rmin, rmax] |
|
rmin = std::min(rmin, 0.0); |
|
rmax = std::max(rmax, 0.0); |
|
|
|
sc = (rmax == rmin) ? 1.0 : (rmax - rmin)/(qmax - qmin); |
|
zp = qmin - (rmin/sc); |
|
|
|
scales.push_back((float)sc); |
|
zeropoints.push_back((int)std::round(zp)); |
|
} |
|
|
|
// FIXIT drop from inference API |
|
Net Net::Impl::quantize(Net& net, InputArrayOfArrays calibData, int inputsDtype, int outputsDtype, bool perChannel) |
|
{ |
|
// Net can be quantized only once. |
|
if (netWasQuantized) |
|
CV_Error(Error::StsBadArg, "Cannot quantize a quantized net"); |
|
|
|
CV_CheckType(inputsDtype, inputsDtype == CV_32F || inputsDtype == CV_8S, "Input depth should be CV_32F or CV_8S"); |
|
CV_CheckType(outputsDtype, outputsDtype == CV_32F || outputsDtype == CV_8S, "Output depth should be CV_32F or CV_8S"); |
|
|
|
bool originalFusion = fusion; |
|
int prefBackend = preferableBackend; |
|
int prefTarget = preferableTarget; |
|
|
|
// Disable fusions and use CPU backend to quantize net |
|
// FIXIT: we should not modify original network! |
|
setPreferableBackend(net, DNN_BACKEND_OPENCV); |
|
setPreferableTarget(DNN_TARGET_CPU); |
|
enableFusion(false); |
|
enableWinograd(false); |
|
|
|
if (calibData.isMat()) |
|
{ |
|
setInput(calibData.getMat(), /*name=*/"", /*scalefactor=*/1.0, /*mean=*/Scalar()); |
|
} |
|
else if (calibData.isMatVector()) |
|
{ |
|
std::vector<Mat> calibDataVec; |
|
calibData.getMatVector(calibDataVec); |
|
|
|
std::vector<String> inpNames = netInputLayer->outNames; |
|
CV_CheckEQ(calibDataVec.size(), inpNames.size(), "Calibration data size should be equal to number of inputs"); |
|
for (int i = 0; i < calibDataVec.size(); i++) |
|
setInput(calibDataVec[i], inpNames[i], /*scalefactor=*/1.0, /*mean=*/Scalar()); |
|
} |
|
|
|
std::vector<String> outNames = getUnconnectedOutLayersNames(); |
|
std::vector<LayerPin> pins; |
|
for (int i = 0; i < outNames.size(); i++) |
|
pins.push_back(getPinByAlias(outNames[i])); |
|
setUpNet(pins); |
|
|
|
// Compute scales and zeropoints for all the layers |
|
std::vector<std::vector<float> > scales; |
|
std::vector<std::vector<int> > zeropoints; |
|
for (Impl::MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); it++) |
|
{ |
|
LayerData& ld = it->second; |
|
if (!ld.skip) |
|
{ |
|
Ptr<Layer> layer = ld.layerInstance; |
|
std::vector<Mat> inps(ld.inputBlobs.size()); |
|
for (int i = 0; i < ld.inputBlobs.size(); ++i) |
|
inps[i] = *ld.inputBlobs[i]; |
|
layer->forward(inps, ld.outputBlobs, ld.internals); |
|
} |
|
|
|
std::vector<float> sc; |
|
std::vector<int> zp; |
|
if (ld.type == "TanH") |
|
{ |
|
sc.push_back(1.f/128); |
|
zp.push_back(0); |
|
} |
|
else if (ld.type == "Sigmoid" || ld.type == "Softmax" || ld.type == "SoftMax") |
|
{ |
|
if (ld.params.get<bool>("log_softmax", false)) |
|
{ |
|
sc.push_back(16.f/256); |
|
zp.push_back(127); |
|
} |
|
else |
|
{ |
|
sc.push_back(1.f/256); |
|
zp.push_back(-128); |
|
} |
|
} |
|
else if (ld.type == "Split" || ld.type == "Slice" || ld.type == "Crop") |
|
{ |
|
std::vector<float> inp_sc; std::vector<int> inp_zp; |
|
getQuantizationParams(*ld.inputBlobs[0], inp_sc, inp_zp); |
|
sc.assign(ld.outputBlobs.size(), inp_sc[0]); |
|
zp.assign(ld.outputBlobs.size(), inp_zp[0]); |
|
} |
|
else |
|
{ |
|
for (int i = 0; i < ld.outputBlobs.size(); i++) |
|
getQuantizationParams(ld.outputBlobs[i], sc, zp); |
|
} |
|
scales.push_back(sc); |
|
zeropoints.push_back(zp); |
|
} |
|
|
|
// For some layers, the input and output scales/zeropoints must be equal so that rescaling of inputs |
|
// is not needed during quantized inference. We start from the last layer and modify the layer's input scales/zeropoints |
|
// TODO : Need a different approach. Current solution fails when 2 such layers have the same input layer |
|
for (Impl::MapIdToLayerData::reverse_iterator it = layers.rbegin(); it != layers.rend(); ++it) |
|
{ |
|
LayerData& ld = it->second; |
|
// Layers with multiple outputs. Number of outputs is equal to number of inputs |
|
if (ld.type == "Blank" || ld.type == "Dropout" || ld.type == "Identity" || ld.type == "Silence" || |
|
ld.type == "Flatten" || ld.type == "Padding" || ld.type == "Permute" || ld.type == "Reshape" || |
|
ld.type == "ReLU6" || ld.type == "Reorg" || ld.type == "ShuffleChannel" || ld.type == "Resize" || |
|
(ld.type == "ReLU" && !ld.params.get<float>("negative_slope", 0.f)) || /* ReLU with negative slope 0 */ |
|
(ld.type == "Reduce" && (toLowerCase(ld.params.get<String>("reduce")) == "max" || |
|
toLowerCase(ld.params.get<String>("reduce")) == "min"))) |
|
{ |
|
for (int i = 0; i < ld.outputBlobs.size(); i++) |
|
{ |
|
LayerPin &pin = ld.inputBlobsId[i]; |
|
scales[pin.lid][pin.oid] = scales[ld.id][i]; |
|
zeropoints[pin.lid][pin.oid] = zeropoints[ld.id][i]; |
|
} |
|
} |
|
// Layers with multiple inputs and single output. |
|
else if ((ld.type == "Pooling" && toLowerCase(ld.params.get<String>("pool", "max")) == "max") /* Max Pooling */ || |
|
(ld.type == "Eltwise" && toLowerCase(ld.params.get<String>("operation", "sum")) == "max") /* Elementwise max */ || |
|
ld.type == "Concat") |
|
{ |
|
for (int i = 0; i < ld.inputBlobsId.size(); i++) |
|
{ |
|
LayerPin &pin = ld.inputBlobsId[i]; |
|
scales[pin.lid][pin.oid] = scales[ld.id][0]; |
|
zeropoints[pin.lid][pin.oid] = zeropoints[ld.id][0]; |
|
} |
|
} |
|
} |
|
|
|
// Create a new Net and add quantized layers to it. |
|
Net dstNet_; |
|
Net::Impl& dstNet = *(dstNet_.impl); |
|
dstNet.netWasQuantized = true; |
|
dstNet.setInputsNames(netInputLayer->outNames); |
|
dstNet.setPreferableBackend(dstNet_, prefBackend); |
|
dstNet.setPreferableTarget(prefTarget); |
|
dstNet.enableFusion(originalFusion); |
|
|
|
for (Impl::MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); it++) |
|
{ |
|
LayerData ld = it->second; |
|
if (ld.id == 0) |
|
{ |
|
LayerData &quantInpLd = dstNet.layers[0]; |
|
quantInpLd.dtype = inputsDtype; |
|
quantInpLd.params.set("scales", DictValue::arrayReal(scales[0].data(), scales[0].size())); |
|
quantInpLd.params.set("zeropoints", DictValue::arrayInt(zeropoints[0].data(), zeropoints[0].size())); |
|
continue; |
|
} |
|
|
|
std::vector<LayerPin> inpPins = ld.inputBlobsId; |
|
// Fill input and output scales/zeropoints for the layer |
|
std::vector<std::vector<float> > inp_out_sc(2); |
|
std::vector<std::vector<int> > inp_out_zp(2); |
|
for (int i = 0; i < inpPins.size(); i++) |
|
{ |
|
LayerPin &pin = inpPins[i]; |
|
inp_out_sc[0].push_back(scales[pin.lid][pin.oid]); |
|
inp_out_zp[0].push_back(zeropoints[pin.lid][pin.oid]); |
|
} |
|
inp_out_sc[1] = scales[ld.id]; |
|
inp_out_zp[1] = zeropoints[ld.id]; |
|
|
|
// Set the quantization type, per-tensor quantize or per-channel quantize. |
|
// Especially for Convolution layer and Fully connection layer. |
|
ld.params.set("per_channel", perChannel); |
|
|
|
// Quantize layer |
|
Ptr<Layer> layer = ld.layerInstance; |
|
if (layer->tryQuantize(inp_out_sc, inp_out_zp, ld.params)) |
|
{ |
|
ld.type += "Int8"; |
|
ld.dtype = CV_8S; |
|
} |
|
ld.params.set("scales", DictValue::arrayReal(inp_out_sc[1].data(), inp_out_sc[1].size())); |
|
ld.params.set("zeropoints", DictValue::arrayInt(inp_out_zp[1].data(), inp_out_zp[1].size())); |
|
|
|
// Check and add quantize/dequantize node before layer |
|
for (int i = 0; i < inpPins.size(); i++) |
|
{ |
|
LayerPin &pin = inpPins[i]; |
|
LayerData &inpLd = dstNet.getLayerData(getLayerName(pin.lid)); |
|
pin.lid = inpLd.id; |
|
if (inpLd.dtype != ld.dtype) |
|
{ |
|
String layerName = (inpLd.dtype == CV_32F && ld.dtype == CV_8S) ? cv::format("quantize/%s/%d", inpLd.name.c_str(), pin.oid) |
|
: cv::format("dequantize/%s/%d", inpLd.name.c_str(), pin.oid); |
|
// Check if quantize/dequantize node for the input layer already exists |
|
if (dstNet.getLayerId(layerName) >= 0) |
|
{ |
|
pin.lid = dstNet.getLayerId(layerName); |
|
pin.oid = 0; |
|
} |
|
else |
|
{ |
|
LayerParams lp; |
|
lp.set("scales", inp_out_sc[0][i]); |
|
lp.set("zeropoints", inp_out_zp[0][i]); |
|
lp.name = layerName; |
|
lp.type = (inpLd.dtype == CV_32F && ld.dtype == CV_8S) ? "Quantize" : "Dequantize"; |
|
int newLid = dstNet.addLayer(lp.name, lp.type, ld.dtype, lp); |
|
dstNet.connect(pin.lid, pin.oid, newLid, 0); |
|
pin.lid = newLid; pin.oid = 0; |
|
} |
|
} |
|
} |
|
|
|
// Add quantized layer to Net and connect to its inputs. |
|
int newLid = dstNet.addLayer(ld.name, ld.type, ld.dtype, ld.params); |
|
for( int i = 0; i < inpPins.size(); i++ ) |
|
dstNet.connect(inpPins[i].lid, inpPins[i].oid, newLid, i); |
|
|
|
// If the layer is a output layer, add quantize/dequantize node after it based on output's data type. |
|
if (ld.requiredOutputs.size() == 0 && ld.dtype != outputsDtype) |
|
{ |
|
LayerParams lp; |
|
lp.set("scales", inp_out_sc[1][0]); |
|
lp.set("zeropoints", inp_out_zp[1][0]); |
|
lp.name = ((ld.dtype == CV_32F && outputsDtype == CV_8S) ? "quantize/" : "dequantize/") + ld.name; |
|
lp.type = (ld.dtype == CV_32F && outputsDtype == CV_8S) ? "Quantize" : "Dequantize"; |
|
dstNet.addLayerToPrev(lp.name, lp.type, outputsDtype, lp); |
|
} |
|
} |
|
// Restore FP32 Net's backend, target and fusion |
|
setPreferableBackend(net, prefBackend); |
|
setPreferableTarget(prefTarget); |
|
enableFusion(originalFusion); |
|
return dstNet_; |
|
} |
|
|
|
// FIXIT drop from inference API |
|
void Net::Impl::getInputDetails(std::vector<float>& scales, std::vector<int>& zeropoints) /*const*/ |
|
{ |
|
if (!netWasQuantized) |
|
CV_Error(Error::StsBadFunc, "Net isn't quantized"); |
|
|
|
LayerParams &lp = layers[0].params; |
|
DictValue sc = lp.get("scales"); |
|
DictValue zp = lp.get("zeropoints"); |
|
|
|
for (int i = 0; i < sc.size(); i++) |
|
{ |
|
scales.push_back(sc.get<float>(i)); |
|
zeropoints.push_back(zp.get<int>(i)); |
|
} |
|
} |
|
|
|
// FIXIT drop from inference API |
|
void Net::Impl::getOutputDetails(std::vector<float>& scales, std::vector<int>& zeropoints) /*const*/ |
|
{ |
|
if (!netWasQuantized) |
|
CV_Error(Error::StsBadFunc, "Net isn't quantized"); |
|
|
|
std::vector<int> outLayerIds = getUnconnectedOutLayers(); |
|
for (auto &lid : outLayerIds) |
|
{ |
|
LayerParams &lp = layers[lid].params; |
|
DictValue sc = lp.get("scales"); |
|
DictValue zp = lp.get("zeropoints"); |
|
|
|
for (int i = 0; i < sc.size(); i++) |
|
{ |
|
scales.push_back(sc.get<float>(i)); |
|
zeropoints.push_back(zp.get<int>(i)); |
|
} |
|
} |
|
} |
|
|
|
|
|
CV__DNN_INLINE_NS_END |
|
}} // namespace cv::dnn
|
|
|