mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
102 lines
2.4 KiB
102 lines
2.4 KiB
/* This sample demonstrates the way you can perform independed tasks |
|
on the different GPUs */ |
|
|
|
// Disable some warnings which are caused with CUDA headers |
|
#if defined(_MSC_VER) |
|
#pragma warning(disable: 4201 4408 4100) |
|
#endif |
|
|
|
#include <iostream> |
|
#include <cvconfig.h> |
|
#include <opencv2/core/core.hpp> |
|
#include <opencv2/gpu/gpu.hpp> |
|
|
|
#if !defined(HAVE_CUDA) || !defined(HAVE_TBB) |
|
|
|
int main() |
|
{ |
|
#if !defined(HAVE_CUDA) |
|
std::cout << "CUDA support is required (CMake key 'WITH_CUDA' must be true).\n"; |
|
#endif |
|
|
|
#if !defined(HAVE_TBB) |
|
std::cout << "TBB support is required (CMake key 'WITH_TBB' must be true).\n"; |
|
#endif |
|
|
|
return 0; |
|
} |
|
|
|
#else |
|
|
|
#include "opencv2/core/internal.hpp" // For TBB wrappers |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::gpu; |
|
|
|
struct Worker { void operator()(int device_id) const; }; |
|
|
|
MultiGpuManager multi_gpu_mgr; |
|
|
|
int main() |
|
{ |
|
int num_devices = getCudaEnabledDeviceCount(); |
|
if (num_devices < 2) |
|
{ |
|
std::cout << "Two or more GPUs are required\n"; |
|
return -1; |
|
} |
|
for (int i = 0; i < num_devices; ++i) |
|
{ |
|
DeviceInfo dev_info(i); |
|
if (!dev_info.isCompatible()) |
|
{ |
|
std::cout << "GPU module isn't built for GPU #" << i << " (" |
|
<< dev_info.name() << ", CC " << dev_info.majorVersion() |
|
<< dev_info.minorVersion() << "\n"; |
|
return -1; |
|
} |
|
} |
|
|
|
multi_gpu_mgr.init(); |
|
|
|
// Execute calculation in two threads using two GPUs |
|
int devices[] = {0, 1}; |
|
parallel_do(devices, devices + 2, Worker()); |
|
|
|
return 0; |
|
} |
|
|
|
|
|
void Worker::operator()(int device_id) const |
|
{ |
|
multi_gpu_mgr.gpuOn(device_id); |
|
|
|
Mat src(1000, 1000, CV_32F); |
|
Mat dst; |
|
|
|
RNG rng(0); |
|
rng.fill(src, RNG::UNIFORM, 0, 1); |
|
|
|
// CPU works |
|
transpose(src, dst); |
|
|
|
// GPU works |
|
GpuMat d_src(src); |
|
GpuMat d_dst; |
|
transpose(d_src, d_dst); |
|
|
|
// Check results |
|
bool passed = norm(dst - Mat(d_dst), NORM_INF) < 1e-3; |
|
std::cout << "GPU #" << device_id << " (" << DeviceInfo().name() << "): " |
|
<< (passed ? "passed" : "FAILED") << endl; |
|
|
|
// Deallocate data here, otherwise deallocation will be performed |
|
// after context is extracted from the stack |
|
d_src.release(); |
|
d_dst.release(); |
|
|
|
multi_gpu_mgr.gpuOff(); |
|
} |
|
|
|
#endif
|
|
|