mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
125 lines
3.2 KiB
125 lines
3.2 KiB
/* slacpy.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Subroutine */ int slacpy_(char *uplo, integer *m, integer *n, real *a, |
|
integer *lda, real *b, integer *ldb) |
|
{ |
|
/* System generated locals */ |
|
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2; |
|
|
|
/* Local variables */ |
|
integer i__, j; |
|
extern logical lsame_(char *, char *); |
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.2) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* SLACPY copies all or part of a two-dimensional matrix A to another */ |
|
/* matrix B. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* UPLO (input) CHARACTER*1 */ |
|
/* Specifies the part of the matrix A to be copied to B. */ |
|
/* = 'U': Upper triangular part */ |
|
/* = 'L': Lower triangular part */ |
|
/* Otherwise: All of the matrix A */ |
|
|
|
/* M (input) INTEGER */ |
|
/* The number of rows of the matrix A. M >= 0. */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The number of columns of the matrix A. N >= 0. */ |
|
|
|
/* A (input) REAL array, dimension (LDA,N) */ |
|
/* The m by n matrix A. If UPLO = 'U', only the upper triangle */ |
|
/* or trapezoid is accessed; if UPLO = 'L', only the lower */ |
|
/* triangle or trapezoid is accessed. */ |
|
|
|
/* LDA (input) INTEGER */ |
|
/* The leading dimension of the array A. LDA >= max(1,M). */ |
|
|
|
/* B (output) REAL array, dimension (LDB,N) */ |
|
/* On exit, B = A in the locations specified by UPLO. */ |
|
|
|
/* LDB (input) INTEGER */ |
|
/* The leading dimension of the array B. LDB >= max(1,M). */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Parameter adjustments */ |
|
a_dim1 = *lda; |
|
a_offset = 1 + a_dim1; |
|
a -= a_offset; |
|
b_dim1 = *ldb; |
|
b_offset = 1 + b_dim1; |
|
b -= b_offset; |
|
|
|
/* Function Body */ |
|
if (lsame_(uplo, "U")) { |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
i__2 = min(j,*m); |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
b[i__ + j * b_dim1] = a[i__ + j * a_dim1]; |
|
/* L10: */ |
|
} |
|
/* L20: */ |
|
} |
|
} else if (lsame_(uplo, "L")) { |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
i__2 = *m; |
|
for (i__ = j; i__ <= i__2; ++i__) { |
|
b[i__ + j * b_dim1] = a[i__ + j * a_dim1]; |
|
/* L30: */ |
|
} |
|
/* L40: */ |
|
} |
|
} else { |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
i__2 = *m; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
b[i__ + j * b_dim1] = a[i__ + j * a_dim1]; |
|
/* L50: */ |
|
} |
|
/* L60: */ |
|
} |
|
} |
|
return 0; |
|
|
|
/* End of SLACPY */ |
|
|
|
} /* slacpy_ */
|
|
|