mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
818 lines
31 KiB
818 lines
31 KiB
/* trees.c -- output deflated data using Huffman coding |
|
* Copyright (C) 1995-2021 Jean-loup Gailly |
|
* detect_data_type() function provided freely by Cosmin Truta, 2006 |
|
* For conditions of distribution and use, see copyright notice in zlib.h |
|
*/ |
|
|
|
/* |
|
* ALGORITHM |
|
* |
|
* The "deflation" process uses several Huffman trees. The more |
|
* common source values are represented by shorter bit sequences. |
|
* |
|
* Each code tree is stored in a compressed form which is itself |
|
* a Huffman encoding of the lengths of all the code strings (in |
|
* ascending order by source values). The actual code strings are |
|
* reconstructed from the lengths in the inflate process, as described |
|
* in the deflate specification. |
|
* |
|
* REFERENCES |
|
* |
|
* Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". |
|
* Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc |
|
* |
|
* Storer, James A. |
|
* Data Compression: Methods and Theory, pp. 49-50. |
|
* Computer Science Press, 1988. ISBN 0-7167-8156-5. |
|
* |
|
* Sedgewick, R. |
|
* Algorithms, p290. |
|
* Addison-Wesley, 1983. ISBN 0-201-06672-6. |
|
*/ |
|
|
|
#include "zbuild.h" |
|
#include "deflate.h" |
|
#include "trees.h" |
|
#include "trees_emit.h" |
|
#include "trees_tbl.h" |
|
|
|
/* The lengths of the bit length codes are sent in order of decreasing |
|
* probability, to avoid transmitting the lengths for unused bit length codes. |
|
*/ |
|
|
|
/* =========================================================================== |
|
* Local data. These are initialized only once. |
|
*/ |
|
|
|
struct static_tree_desc_s { |
|
const ct_data *static_tree; /* static tree or NULL */ |
|
const int *extra_bits; /* extra bits for each code or NULL */ |
|
int extra_base; /* base index for extra_bits */ |
|
int elems; /* max number of elements in the tree */ |
|
unsigned int max_length; /* max bit length for the codes */ |
|
}; |
|
|
|
static const static_tree_desc static_l_desc = |
|
{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; |
|
|
|
static const static_tree_desc static_d_desc = |
|
{static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; |
|
|
|
static const static_tree_desc static_bl_desc = |
|
{(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; |
|
|
|
/* =========================================================================== |
|
* Local (static) routines in this file. |
|
*/ |
|
|
|
static void init_block (deflate_state *s); |
|
static void pqdownheap (deflate_state *s, ct_data *tree, int k); |
|
static void gen_bitlen (deflate_state *s, tree_desc *desc); |
|
static void build_tree (deflate_state *s, tree_desc *desc); |
|
static void scan_tree (deflate_state *s, ct_data *tree, int max_code); |
|
static void send_tree (deflate_state *s, ct_data *tree, int max_code); |
|
static int build_bl_tree (deflate_state *s); |
|
static void send_all_trees (deflate_state *s, int lcodes, int dcodes, int blcodes); |
|
static void compress_block (deflate_state *s, const ct_data *ltree, const ct_data *dtree); |
|
static int detect_data_type (deflate_state *s); |
|
static void bi_flush (deflate_state *s); |
|
|
|
/* =========================================================================== |
|
* Initialize the tree data structures for a new zlib stream. |
|
*/ |
|
void Z_INTERNAL zng_tr_init(deflate_state *s) { |
|
s->l_desc.dyn_tree = s->dyn_ltree; |
|
s->l_desc.stat_desc = &static_l_desc; |
|
|
|
s->d_desc.dyn_tree = s->dyn_dtree; |
|
s->d_desc.stat_desc = &static_d_desc; |
|
|
|
s->bl_desc.dyn_tree = s->bl_tree; |
|
s->bl_desc.stat_desc = &static_bl_desc; |
|
|
|
s->bi_buf = 0; |
|
s->bi_valid = 0; |
|
#ifdef ZLIB_DEBUG |
|
s->compressed_len = 0L; |
|
s->bits_sent = 0L; |
|
#endif |
|
|
|
/* Initialize the first block of the first file: */ |
|
init_block(s); |
|
} |
|
|
|
/* =========================================================================== |
|
* Initialize a new block. |
|
*/ |
|
static void init_block(deflate_state *s) { |
|
int n; /* iterates over tree elements */ |
|
|
|
/* Initialize the trees. */ |
|
for (n = 0; n < L_CODES; n++) |
|
s->dyn_ltree[n].Freq = 0; |
|
for (n = 0; n < D_CODES; n++) |
|
s->dyn_dtree[n].Freq = 0; |
|
for (n = 0; n < BL_CODES; n++) |
|
s->bl_tree[n].Freq = 0; |
|
|
|
s->dyn_ltree[END_BLOCK].Freq = 1; |
|
s->opt_len = s->static_len = 0L; |
|
s->sym_next = s->matches = 0; |
|
} |
|
|
|
#define SMALLEST 1 |
|
/* Index within the heap array of least frequent node in the Huffman tree */ |
|
|
|
|
|
/* =========================================================================== |
|
* Remove the smallest element from the heap and recreate the heap with |
|
* one less element. Updates heap and heap_len. |
|
*/ |
|
#define pqremove(s, tree, top) \ |
|
{\ |
|
top = s->heap[SMALLEST]; \ |
|
s->heap[SMALLEST] = s->heap[s->heap_len--]; \ |
|
pqdownheap(s, tree, SMALLEST); \ |
|
} |
|
|
|
/* =========================================================================== |
|
* Compares to subtrees, using the tree depth as tie breaker when |
|
* the subtrees have equal frequency. This minimizes the worst case length. |
|
*/ |
|
#define smaller(tree, n, m, depth) \ |
|
(tree[n].Freq < tree[m].Freq || \ |
|
(tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) |
|
|
|
/* =========================================================================== |
|
* Restore the heap property by moving down the tree starting at node k, |
|
* exchanging a node with the smallest of its two sons if necessary, stopping |
|
* when the heap property is re-established (each father smaller than its |
|
* two sons). |
|
*/ |
|
static void pqdownheap(deflate_state *s, ct_data *tree, int k) { |
|
/* tree: the tree to restore */ |
|
/* k: node to move down */ |
|
int v = s->heap[k]; |
|
int j = k << 1; /* left son of k */ |
|
while (j <= s->heap_len) { |
|
/* Set j to the smallest of the two sons: */ |
|
if (j < s->heap_len && smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { |
|
j++; |
|
} |
|
/* Exit if v is smaller than both sons */ |
|
if (smaller(tree, v, s->heap[j], s->depth)) |
|
break; |
|
|
|
/* Exchange v with the smallest son */ |
|
s->heap[k] = s->heap[j]; |
|
k = j; |
|
|
|
/* And continue down the tree, setting j to the left son of k */ |
|
j <<= 1; |
|
} |
|
s->heap[k] = v; |
|
} |
|
|
|
/* =========================================================================== |
|
* Compute the optimal bit lengths for a tree and update the total bit length |
|
* for the current block. |
|
* IN assertion: the fields freq and dad are set, heap[heap_max] and |
|
* above are the tree nodes sorted by increasing frequency. |
|
* OUT assertions: the field len is set to the optimal bit length, the |
|
* array bl_count contains the frequencies for each bit length. |
|
* The length opt_len is updated; static_len is also updated if stree is |
|
* not null. |
|
*/ |
|
static void gen_bitlen(deflate_state *s, tree_desc *desc) { |
|
/* desc: the tree descriptor */ |
|
ct_data *tree = desc->dyn_tree; |
|
int max_code = desc->max_code; |
|
const ct_data *stree = desc->stat_desc->static_tree; |
|
const int *extra = desc->stat_desc->extra_bits; |
|
int base = desc->stat_desc->extra_base; |
|
unsigned int max_length = desc->stat_desc->max_length; |
|
int h; /* heap index */ |
|
int n, m; /* iterate over the tree elements */ |
|
unsigned int bits; /* bit length */ |
|
int xbits; /* extra bits */ |
|
uint16_t f; /* frequency */ |
|
int overflow = 0; /* number of elements with bit length too large */ |
|
|
|
for (bits = 0; bits <= MAX_BITS; bits++) |
|
s->bl_count[bits] = 0; |
|
|
|
/* In a first pass, compute the optimal bit lengths (which may |
|
* overflow in the case of the bit length tree). |
|
*/ |
|
tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ |
|
|
|
for (h = s->heap_max + 1; h < HEAP_SIZE; h++) { |
|
n = s->heap[h]; |
|
bits = tree[tree[n].Dad].Len + 1u; |
|
if (bits > max_length){ |
|
bits = max_length; |
|
overflow++; |
|
} |
|
tree[n].Len = (uint16_t)bits; |
|
/* We overwrite tree[n].Dad which is no longer needed */ |
|
|
|
if (n > max_code) /* not a leaf node */ |
|
continue; |
|
|
|
s->bl_count[bits]++; |
|
xbits = 0; |
|
if (n >= base) |
|
xbits = extra[n-base]; |
|
f = tree[n].Freq; |
|
s->opt_len += (unsigned long)f * (unsigned int)(bits + xbits); |
|
if (stree) |
|
s->static_len += (unsigned long)f * (unsigned int)(stree[n].Len + xbits); |
|
} |
|
if (overflow == 0) |
|
return; |
|
|
|
Tracev((stderr, "\nbit length overflow\n")); |
|
/* This happens for example on obj2 and pic of the Calgary corpus */ |
|
|
|
/* Find the first bit length which could increase: */ |
|
do { |
|
bits = max_length - 1; |
|
while (s->bl_count[bits] == 0) |
|
bits--; |
|
s->bl_count[bits]--; /* move one leaf down the tree */ |
|
s->bl_count[bits+1] += 2u; /* move one overflow item as its brother */ |
|
s->bl_count[max_length]--; |
|
/* The brother of the overflow item also moves one step up, |
|
* but this does not affect bl_count[max_length] |
|
*/ |
|
overflow -= 2; |
|
} while (overflow > 0); |
|
|
|
/* Now recompute all bit lengths, scanning in increasing frequency. |
|
* h is still equal to HEAP_SIZE. (It is simpler to reconstruct all |
|
* lengths instead of fixing only the wrong ones. This idea is taken |
|
* from 'ar' written by Haruhiko Okumura.) |
|
*/ |
|
for (bits = max_length; bits != 0; bits--) { |
|
n = s->bl_count[bits]; |
|
while (n != 0) { |
|
m = s->heap[--h]; |
|
if (m > max_code) |
|
continue; |
|
if (tree[m].Len != bits) { |
|
Tracev((stderr, "code %d bits %d->%u\n", m, tree[m].Len, bits)); |
|
s->opt_len += (unsigned long)(bits * tree[m].Freq); |
|
s->opt_len -= (unsigned long)(tree[m].Len * tree[m].Freq); |
|
tree[m].Len = (uint16_t)bits; |
|
} |
|
n--; |
|
} |
|
} |
|
} |
|
|
|
/* =========================================================================== |
|
* Generate the codes for a given tree and bit counts (which need not be |
|
* optimal). |
|
* IN assertion: the array bl_count contains the bit length statistics for |
|
* the given tree and the field len is set for all tree elements. |
|
* OUT assertion: the field code is set for all tree elements of non |
|
* zero code length. |
|
*/ |
|
Z_INTERNAL void gen_codes(ct_data *tree, int max_code, uint16_t *bl_count) { |
|
/* tree: the tree to decorate */ |
|
/* max_code: largest code with non zero frequency */ |
|
/* bl_count: number of codes at each bit length */ |
|
uint16_t next_code[MAX_BITS+1]; /* next code value for each bit length */ |
|
unsigned int code = 0; /* running code value */ |
|
int bits; /* bit index */ |
|
int n; /* code index */ |
|
|
|
/* The distribution counts are first used to generate the code values |
|
* without bit reversal. |
|
*/ |
|
for (bits = 1; bits <= MAX_BITS; bits++) { |
|
code = (code + bl_count[bits-1]) << 1; |
|
next_code[bits] = (uint16_t)code; |
|
} |
|
/* Check that the bit counts in bl_count are consistent. The last code |
|
* must be all ones. |
|
*/ |
|
Assert(code + bl_count[MAX_BITS]-1 == (1 << MAX_BITS)-1, "inconsistent bit counts"); |
|
Tracev((stderr, "\ngen_codes: max_code %d ", max_code)); |
|
|
|
for (n = 0; n <= max_code; n++) { |
|
int len = tree[n].Len; |
|
if (len == 0) |
|
continue; |
|
/* Now reverse the bits */ |
|
tree[n].Code = PREFIX(bi_reverse)(next_code[len]++, len); |
|
|
|
Tracecv(tree != static_ltree, (stderr, "\nn %3d %c l %2d c %4x (%x) ", |
|
n, (isgraph(n & 0xff) ? n : ' '), len, tree[n].Code, next_code[len]-1)); |
|
} |
|
} |
|
|
|
/* =========================================================================== |
|
* Construct one Huffman tree and assigns the code bit strings and lengths. |
|
* Update the total bit length for the current block. |
|
* IN assertion: the field freq is set for all tree elements. |
|
* OUT assertions: the fields len and code are set to the optimal bit length |
|
* and corresponding code. The length opt_len is updated; static_len is |
|
* also updated if stree is not null. The field max_code is set. |
|
*/ |
|
static void build_tree(deflate_state *s, tree_desc *desc) { |
|
/* desc: the tree descriptor */ |
|
ct_data *tree = desc->dyn_tree; |
|
const ct_data *stree = desc->stat_desc->static_tree; |
|
int elems = desc->stat_desc->elems; |
|
int n, m; /* iterate over heap elements */ |
|
int max_code = -1; /* largest code with non zero frequency */ |
|
int node; /* new node being created */ |
|
|
|
/* Construct the initial heap, with least frequent element in |
|
* heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. |
|
* heap[0] is not used. |
|
*/ |
|
s->heap_len = 0; |
|
s->heap_max = HEAP_SIZE; |
|
|
|
for (n = 0; n < elems; n++) { |
|
if (tree[n].Freq != 0) { |
|
s->heap[++(s->heap_len)] = max_code = n; |
|
s->depth[n] = 0; |
|
} else { |
|
tree[n].Len = 0; |
|
} |
|
} |
|
|
|
/* The pkzip format requires that at least one distance code exists, |
|
* and that at least one bit should be sent even if there is only one |
|
* possible code. So to avoid special checks later on we force at least |
|
* two codes of non zero frequency. |
|
*/ |
|
while (s->heap_len < 2) { |
|
node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); |
|
tree[node].Freq = 1; |
|
s->depth[node] = 0; |
|
s->opt_len--; |
|
if (stree) |
|
s->static_len -= stree[node].Len; |
|
/* node is 0 or 1 so it does not have extra bits */ |
|
} |
|
desc->max_code = max_code; |
|
|
|
/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, |
|
* establish sub-heaps of increasing lengths: |
|
*/ |
|
for (n = s->heap_len/2; n >= 1; n--) |
|
pqdownheap(s, tree, n); |
|
|
|
/* Construct the Huffman tree by repeatedly combining the least two |
|
* frequent nodes. |
|
*/ |
|
node = elems; /* next internal node of the tree */ |
|
do { |
|
pqremove(s, tree, n); /* n = node of least frequency */ |
|
m = s->heap[SMALLEST]; /* m = node of next least frequency */ |
|
|
|
s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ |
|
s->heap[--(s->heap_max)] = m; |
|
|
|
/* Create a new node father of n and m */ |
|
tree[node].Freq = tree[n].Freq + tree[m].Freq; |
|
s->depth[node] = (unsigned char)((s->depth[n] >= s->depth[m] ? |
|
s->depth[n] : s->depth[m]) + 1); |
|
tree[n].Dad = tree[m].Dad = (uint16_t)node; |
|
#ifdef DUMP_BL_TREE |
|
if (tree == s->bl_tree) { |
|
fprintf(stderr, "\nnode %d(%d), sons %d(%d) %d(%d)", |
|
node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); |
|
} |
|
#endif |
|
/* and insert the new node in the heap */ |
|
s->heap[SMALLEST] = node++; |
|
pqdownheap(s, tree, SMALLEST); |
|
} while (s->heap_len >= 2); |
|
|
|
s->heap[--(s->heap_max)] = s->heap[SMALLEST]; |
|
|
|
/* At this point, the fields freq and dad are set. We can now |
|
* generate the bit lengths. |
|
*/ |
|
gen_bitlen(s, (tree_desc *)desc); |
|
|
|
/* The field len is now set, we can generate the bit codes */ |
|
gen_codes((ct_data *)tree, max_code, s->bl_count); |
|
} |
|
|
|
/* =========================================================================== |
|
* Scan a literal or distance tree to determine the frequencies of the codes |
|
* in the bit length tree. |
|
*/ |
|
static void scan_tree(deflate_state *s, ct_data *tree, int max_code) { |
|
/* tree: the tree to be scanned */ |
|
/* max_code: and its largest code of non zero frequency */ |
|
int n; /* iterates over all tree elements */ |
|
int prevlen = -1; /* last emitted length */ |
|
int curlen; /* length of current code */ |
|
int nextlen = tree[0].Len; /* length of next code */ |
|
uint16_t count = 0; /* repeat count of the current code */ |
|
uint16_t max_count = 7; /* max repeat count */ |
|
uint16_t min_count = 4; /* min repeat count */ |
|
|
|
if (nextlen == 0) |
|
max_count = 138, min_count = 3; |
|
|
|
tree[max_code+1].Len = (uint16_t)0xffff; /* guard */ |
|
|
|
for (n = 0; n <= max_code; n++) { |
|
curlen = nextlen; |
|
nextlen = tree[n+1].Len; |
|
if (++count < max_count && curlen == nextlen) { |
|
continue; |
|
} else if (count < min_count) { |
|
s->bl_tree[curlen].Freq += count; |
|
} else if (curlen != 0) { |
|
if (curlen != prevlen) |
|
s->bl_tree[curlen].Freq++; |
|
s->bl_tree[REP_3_6].Freq++; |
|
} else if (count <= 10) { |
|
s->bl_tree[REPZ_3_10].Freq++; |
|
} else { |
|
s->bl_tree[REPZ_11_138].Freq++; |
|
} |
|
count = 0; |
|
prevlen = curlen; |
|
if (nextlen == 0) { |
|
max_count = 138, min_count = 3; |
|
} else if (curlen == nextlen) { |
|
max_count = 6, min_count = 3; |
|
} else { |
|
max_count = 7, min_count = 4; |
|
} |
|
} |
|
} |
|
|
|
/* =========================================================================== |
|
* Send a literal or distance tree in compressed form, using the codes in |
|
* bl_tree. |
|
*/ |
|
static void send_tree(deflate_state *s, ct_data *tree, int max_code) { |
|
/* tree: the tree to be scanned */ |
|
/* max_code and its largest code of non zero frequency */ |
|
int n; /* iterates over all tree elements */ |
|
int prevlen = -1; /* last emitted length */ |
|
int curlen; /* length of current code */ |
|
int nextlen = tree[0].Len; /* length of next code */ |
|
int count = 0; /* repeat count of the current code */ |
|
int max_count = 7; /* max repeat count */ |
|
int min_count = 4; /* min repeat count */ |
|
|
|
/* tree[max_code+1].Len = -1; */ /* guard already set */ |
|
if (nextlen == 0) |
|
max_count = 138, min_count = 3; |
|
|
|
// Temp local variables |
|
uint32_t bi_valid = s->bi_valid; |
|
uint64_t bi_buf = s->bi_buf; |
|
|
|
for (n = 0; n <= max_code; n++) { |
|
curlen = nextlen; |
|
nextlen = tree[n+1].Len; |
|
if (++count < max_count && curlen == nextlen) { |
|
continue; |
|
} else if (count < min_count) { |
|
do { |
|
send_code(s, curlen, s->bl_tree, bi_buf, bi_valid); |
|
} while (--count != 0); |
|
|
|
} else if (curlen != 0) { |
|
if (curlen != prevlen) { |
|
send_code(s, curlen, s->bl_tree, bi_buf, bi_valid); |
|
count--; |
|
} |
|
Assert(count >= 3 && count <= 6, " 3_6?"); |
|
send_code(s, REP_3_6, s->bl_tree, bi_buf, bi_valid); |
|
send_bits(s, count-3, 2, bi_buf, bi_valid); |
|
|
|
} else if (count <= 10) { |
|
send_code(s, REPZ_3_10, s->bl_tree, bi_buf, bi_valid); |
|
send_bits(s, count-3, 3, bi_buf, bi_valid); |
|
|
|
} else { |
|
send_code(s, REPZ_11_138, s->bl_tree, bi_buf, bi_valid); |
|
send_bits(s, count-11, 7, bi_buf, bi_valid); |
|
} |
|
count = 0; |
|
prevlen = curlen; |
|
if (nextlen == 0) { |
|
max_count = 138, min_count = 3; |
|
} else if (curlen == nextlen) { |
|
max_count = 6, min_count = 3; |
|
} else { |
|
max_count = 7, min_count = 4; |
|
} |
|
} |
|
|
|
// Store back temp variables |
|
s->bi_buf = bi_buf; |
|
s->bi_valid = bi_valid; |
|
} |
|
|
|
/* =========================================================================== |
|
* Construct the Huffman tree for the bit lengths and return the index in |
|
* bl_order of the last bit length code to send. |
|
*/ |
|
static int build_bl_tree(deflate_state *s) { |
|
int max_blindex; /* index of last bit length code of non zero freq */ |
|
|
|
/* Determine the bit length frequencies for literal and distance trees */ |
|
scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); |
|
scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); |
|
|
|
/* Build the bit length tree: */ |
|
build_tree(s, (tree_desc *)(&(s->bl_desc))); |
|
/* opt_len now includes the length of the tree representations, except |
|
* the lengths of the bit lengths codes and the 5+5+4 bits for the counts. |
|
*/ |
|
|
|
/* Determine the number of bit length codes to send. The pkzip format |
|
* requires that at least 4 bit length codes be sent. (appnote.txt says |
|
* 3 but the actual value used is 4.) |
|
*/ |
|
for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { |
|
if (s->bl_tree[bl_order[max_blindex]].Len != 0) |
|
break; |
|
} |
|
/* Update opt_len to include the bit length tree and counts */ |
|
s->opt_len += 3*((unsigned long)max_blindex+1) + 5+5+4; |
|
Tracev((stderr, "\ndyn trees: dyn %lu, stat %lu", s->opt_len, s->static_len)); |
|
|
|
return max_blindex; |
|
} |
|
|
|
/* =========================================================================== |
|
* Send the header for a block using dynamic Huffman trees: the counts, the |
|
* lengths of the bit length codes, the literal tree and the distance tree. |
|
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. |
|
*/ |
|
static void send_all_trees(deflate_state *s, int lcodes, int dcodes, int blcodes) { |
|
int rank; /* index in bl_order */ |
|
|
|
Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); |
|
Assert(lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, "too many codes"); |
|
|
|
// Temp local variables |
|
uint32_t bi_valid = s->bi_valid; |
|
uint64_t bi_buf = s->bi_buf; |
|
|
|
Tracev((stderr, "\nbl counts: ")); |
|
send_bits(s, lcodes-257, 5, bi_buf, bi_valid); /* not +255 as stated in appnote.txt */ |
|
send_bits(s, dcodes-1, 5, bi_buf, bi_valid); |
|
send_bits(s, blcodes-4, 4, bi_buf, bi_valid); /* not -3 as stated in appnote.txt */ |
|
for (rank = 0; rank < blcodes; rank++) { |
|
Tracev((stderr, "\nbl code %2u ", bl_order[rank])); |
|
send_bits(s, s->bl_tree[bl_order[rank]].Len, 3, bi_buf, bi_valid); |
|
} |
|
Tracev((stderr, "\nbl tree: sent %lu", s->bits_sent)); |
|
|
|
// Store back temp variables |
|
s->bi_buf = bi_buf; |
|
s->bi_valid = bi_valid; |
|
|
|
send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ |
|
Tracev((stderr, "\nlit tree: sent %lu", s->bits_sent)); |
|
|
|
send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ |
|
Tracev((stderr, "\ndist tree: sent %lu", s->bits_sent)); |
|
} |
|
|
|
/* =========================================================================== |
|
* Send a stored block |
|
*/ |
|
void Z_INTERNAL zng_tr_stored_block(deflate_state *s, char *buf, uint32_t stored_len, int last) { |
|
/* buf: input block */ |
|
/* stored_len: length of input block */ |
|
/* last: one if this is the last block for a file */ |
|
zng_tr_emit_tree(s, STORED_BLOCK, last); /* send block type */ |
|
zng_tr_emit_align(s); /* align on byte boundary */ |
|
cmpr_bits_align(s); |
|
put_short(s, (uint16_t)stored_len); |
|
put_short(s, (uint16_t)~stored_len); |
|
cmpr_bits_add(s, 32); |
|
sent_bits_add(s, 32); |
|
if (stored_len) { |
|
memcpy(s->pending_buf + s->pending, (unsigned char *)buf, stored_len); |
|
s->pending += stored_len; |
|
cmpr_bits_add(s, stored_len << 3); |
|
sent_bits_add(s, stored_len << 3); |
|
} |
|
} |
|
|
|
/* =========================================================================== |
|
* Flush the bits in the bit buffer to pending output (leaves at most 7 bits) |
|
*/ |
|
void Z_INTERNAL zng_tr_flush_bits(deflate_state *s) { |
|
bi_flush(s); |
|
} |
|
|
|
/* =========================================================================== |
|
* Send one empty static block to give enough lookahead for inflate. |
|
* This takes 10 bits, of which 7 may remain in the bit buffer. |
|
*/ |
|
void Z_INTERNAL zng_tr_align(deflate_state *s) { |
|
zng_tr_emit_tree(s, STATIC_TREES, 0); |
|
zng_tr_emit_end_block(s, static_ltree, 0); |
|
bi_flush(s); |
|
} |
|
|
|
/* =========================================================================== |
|
* Determine the best encoding for the current block: dynamic trees, static |
|
* trees or store, and write out the encoded block. |
|
*/ |
|
void Z_INTERNAL zng_tr_flush_block(deflate_state *s, char *buf, uint32_t stored_len, int last) { |
|
/* buf: input block, or NULL if too old */ |
|
/* stored_len: length of input block */ |
|
/* last: one if this is the last block for a file */ |
|
unsigned long opt_lenb, static_lenb; /* opt_len and static_len in bytes */ |
|
int max_blindex = 0; /* index of last bit length code of non zero freq */ |
|
|
|
/* Build the Huffman trees unless a stored block is forced */ |
|
if (UNLIKELY(s->sym_next == 0)) { |
|
/* Emit an empty static tree block with no codes */ |
|
opt_lenb = static_lenb = 0; |
|
s->static_len = 7; |
|
} else if (s->level > 0) { |
|
/* Check if the file is binary or text */ |
|
if (s->strm->data_type == Z_UNKNOWN) |
|
s->strm->data_type = detect_data_type(s); |
|
|
|
/* Construct the literal and distance trees */ |
|
build_tree(s, (tree_desc *)(&(s->l_desc))); |
|
Tracev((stderr, "\nlit data: dyn %lu, stat %lu", s->opt_len, s->static_len)); |
|
|
|
build_tree(s, (tree_desc *)(&(s->d_desc))); |
|
Tracev((stderr, "\ndist data: dyn %lu, stat %lu", s->opt_len, s->static_len)); |
|
/* At this point, opt_len and static_len are the total bit lengths of |
|
* the compressed block data, excluding the tree representations. |
|
*/ |
|
|
|
/* Build the bit length tree for the above two trees, and get the index |
|
* in bl_order of the last bit length code to send. |
|
*/ |
|
max_blindex = build_bl_tree(s); |
|
|
|
/* Determine the best encoding. Compute the block lengths in bytes. */ |
|
opt_lenb = (s->opt_len+3+7) >> 3; |
|
static_lenb = (s->static_len+3+7) >> 3; |
|
|
|
Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %u lit %u ", |
|
opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, |
|
s->sym_next / 3)); |
|
|
|
if (static_lenb <= opt_lenb || s->strategy == Z_FIXED) |
|
opt_lenb = static_lenb; |
|
|
|
} else { |
|
Assert(buf != NULL, "lost buf"); |
|
opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ |
|
} |
|
|
|
if (stored_len+4 <= opt_lenb && buf != NULL) { |
|
/* 4: two words for the lengths |
|
* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. |
|
* Otherwise we can't have processed more than WSIZE input bytes since |
|
* the last block flush, because compression would have been |
|
* successful. If LIT_BUFSIZE <= WSIZE, it is never too late to |
|
* transform a block into a stored block. |
|
*/ |
|
zng_tr_stored_block(s, buf, stored_len, last); |
|
|
|
} else if (static_lenb == opt_lenb) { |
|
zng_tr_emit_tree(s, STATIC_TREES, last); |
|
compress_block(s, (const ct_data *)static_ltree, (const ct_data *)static_dtree); |
|
cmpr_bits_add(s, s->static_len); |
|
} else { |
|
zng_tr_emit_tree(s, DYN_TREES, last); |
|
send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, max_blindex+1); |
|
compress_block(s, (const ct_data *)s->dyn_ltree, (const ct_data *)s->dyn_dtree); |
|
cmpr_bits_add(s, s->opt_len); |
|
} |
|
Assert(s->compressed_len == s->bits_sent, "bad compressed size"); |
|
/* The above check is made mod 2^32, for files larger than 512 MB |
|
* and unsigned long implemented on 32 bits. |
|
*/ |
|
init_block(s); |
|
|
|
if (last) { |
|
zng_tr_emit_align(s); |
|
} |
|
Tracev((stderr, "\ncomprlen %lu(%lu) ", s->compressed_len>>3, s->compressed_len-7*last)); |
|
} |
|
|
|
/* =========================================================================== |
|
* Send the block data compressed using the given Huffman trees |
|
*/ |
|
static void compress_block(deflate_state *s, const ct_data *ltree, const ct_data *dtree) { |
|
/* ltree: literal tree */ |
|
/* dtree: distance tree */ |
|
unsigned dist; /* distance of matched string */ |
|
int lc; /* match length or unmatched char (if dist == 0) */ |
|
unsigned sx = 0; /* running index in sym_buf */ |
|
|
|
if (s->sym_next != 0) { |
|
do { |
|
dist = s->sym_buf[sx++] & 0xff; |
|
dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8; |
|
lc = s->sym_buf[sx++]; |
|
if (dist == 0) { |
|
zng_emit_lit(s, ltree, lc); |
|
} else { |
|
zng_emit_dist(s, ltree, dtree, lc, dist); |
|
} /* literal or match pair ? */ |
|
|
|
/* Check that the overlay between pending_buf and sym_buf is ok: */ |
|
Assert(s->pending < s->lit_bufsize + sx, "pending_buf overflow"); |
|
} while (sx < s->sym_next); |
|
} |
|
|
|
zng_emit_end_block(s, ltree, 0); |
|
} |
|
|
|
/* =========================================================================== |
|
* Check if the data type is TEXT or BINARY, using the following algorithm: |
|
* - TEXT if the two conditions below are satisfied: |
|
* a) There are no non-portable control characters belonging to the |
|
* "black list" (0..6, 14..25, 28..31). |
|
* b) There is at least one printable character belonging to the |
|
* "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). |
|
* - BINARY otherwise. |
|
* - The following partially-portable control characters form a |
|
* "gray list" that is ignored in this detection algorithm: |
|
* (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). |
|
* IN assertion: the fields Freq of dyn_ltree are set. |
|
*/ |
|
static int detect_data_type(deflate_state *s) { |
|
/* black_mask is the bit mask of black-listed bytes |
|
* set bits 0..6, 14..25, and 28..31 |
|
* 0xf3ffc07f = binary 11110011111111111100000001111111 |
|
*/ |
|
unsigned long black_mask = 0xf3ffc07fUL; |
|
int n; |
|
|
|
/* Check for non-textual ("black-listed") bytes. */ |
|
for (n = 0; n <= 31; n++, black_mask >>= 1) |
|
if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0)) |
|
return Z_BINARY; |
|
|
|
/* Check for textual ("white-listed") bytes. */ |
|
if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 || s->dyn_ltree[13].Freq != 0) |
|
return Z_TEXT; |
|
for (n = 32; n < LITERALS; n++) |
|
if (s->dyn_ltree[n].Freq != 0) |
|
return Z_TEXT; |
|
|
|
/* There are no "black-listed" or "white-listed" bytes: |
|
* this stream either is empty or has tolerated ("gray-listed") bytes only. |
|
*/ |
|
return Z_BINARY; |
|
} |
|
|
|
/* =========================================================================== |
|
* Flush the bit buffer, keeping at most 7 bits in it. |
|
*/ |
|
static void bi_flush(deflate_state *s) { |
|
if (s->bi_valid == 64) { |
|
put_uint64(s, s->bi_buf); |
|
s->bi_buf = 0; |
|
s->bi_valid = 0; |
|
} else { |
|
if (s->bi_valid >= 32) { |
|
put_uint32(s, (uint32_t)s->bi_buf); |
|
s->bi_buf >>= 32; |
|
s->bi_valid -= 32; |
|
} |
|
if (s->bi_valid >= 16) { |
|
put_short(s, (uint16_t)s->bi_buf); |
|
s->bi_buf >>= 16; |
|
s->bi_valid -= 16; |
|
} |
|
if (s->bi_valid >= 8) { |
|
put_byte(s, s->bi_buf); |
|
s->bi_buf >>= 8; |
|
s->bi_valid -= 8; |
|
} |
|
} |
|
} |
|
|
|
/* =========================================================================== |
|
* Reverse the first len bits of a code using bit manipulation |
|
*/ |
|
Z_INTERNAL uint16_t PREFIX(bi_reverse)(unsigned code, int len) { |
|
/* code: the value to invert */ |
|
/* len: its bit length */ |
|
Assert(len >= 1 && len <= 15, "code length must be 1-15"); |
|
#define bitrev8(b) \ |
|
(uint8_t)((((uint8_t)(b) * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32) |
|
return (bitrev8(code >> 8) | (uint16_t)bitrev8(code) << 8) >> (16 - len); |
|
}
|
|
|