mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
162 lines
5.3 KiB
162 lines
5.3 KiB
''' |
|
Digit recognition adjustment. |
|
Grid search is used to find the best parameters for SVM and KNearest classifiers. |
|
SVM adjustment follows the guidelines given in |
|
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf |
|
|
|
Threading or cloud computing (with http://www.picloud.com/)) may be used |
|
to speedup the computation. |
|
|
|
Usage: |
|
digits_adjust.py [--model {svm|knearest}] [--cloud] [--env <PiCloud environment>] |
|
|
|
--model {svm|knearest} - select the classifier (SVM is the default) |
|
--cloud - use PiCloud computing platform |
|
--env - cloud environment name |
|
|
|
''' |
|
# TODO cloud env setup tutorial |
|
|
|
import numpy as np |
|
import cv2 |
|
from multiprocessing.pool import ThreadPool |
|
|
|
from digits import * |
|
|
|
try: |
|
import cloud |
|
have_cloud = True |
|
except ImportError: |
|
have_cloud = False |
|
|
|
|
|
|
|
def cross_validate(model_class, params, samples, labels, kfold = 3, pool = None): |
|
n = len(samples) |
|
folds = np.array_split(np.arange(n), kfold) |
|
def f(i): |
|
model = model_class(**params) |
|
test_idx = folds[i] |
|
train_idx = list(folds) |
|
train_idx.pop(i) |
|
train_idx = np.hstack(train_idx) |
|
train_samples, train_labels = samples[train_idx], labels[train_idx] |
|
test_samples, test_labels = samples[test_idx], labels[test_idx] |
|
model.train(train_samples, train_labels) |
|
resp = model.predict(test_samples) |
|
score = (resp != test_labels).mean() |
|
print ".", |
|
return score |
|
if pool is None: |
|
scores = map(f, xrange(kfold)) |
|
else: |
|
scores = pool.map(f, xrange(kfold)) |
|
return np.mean(scores) |
|
|
|
|
|
class App(object): |
|
def __init__(self, usecloud=False, cloud_env=''): |
|
if usecloud and not have_cloud: |
|
print 'warning: cloud module is not installed, running locally' |
|
usecloud = False |
|
self.usecloud = usecloud |
|
self.cloud_env = cloud_env |
|
|
|
if self.usecloud: |
|
print 'uploading dataset to cloud...' |
|
cloud.files.put(DIGITS_FN) |
|
self.preprocess_job = cloud.call(self.preprocess, _env=self.cloud_env) |
|
else: |
|
self._samples, self._labels = self.preprocess() |
|
|
|
def preprocess(self): |
|
if self.usecloud: |
|
cloud.files.get(DIGITS_FN) |
|
digits, labels = load_digits(DIGITS_FN) |
|
shuffle = np.random.permutation(len(digits)) |
|
digits, labels = digits[shuffle], labels[shuffle] |
|
digits2 = map(deskew, digits) |
|
samples = preprocess_hog(digits2) |
|
return samples, labels |
|
|
|
def get_dataset(self): |
|
if self.usecloud: |
|
return cloud.result(self.preprocess_job) |
|
else: |
|
return self._samples, self._labels |
|
|
|
def run_jobs(self, f, jobs): |
|
if self.usecloud: |
|
jids = cloud.map(f, jobs, _env=self.cloud_env, _profile=True, _depends_on=self.preprocess_job) |
|
ires = cloud.iresult(jids) |
|
else: |
|
pool = ThreadPool(processes=cv2.getNumberOfCPUs()) |
|
ires = pool.imap_unordered(f, jobs) |
|
return ires |
|
|
|
def adjust_SVM(self): |
|
Cs = np.logspace(0, 10, 15, base=2) |
|
gammas = np.logspace(-7, 4, 15, base=2) |
|
scores = np.zeros((len(Cs), len(gammas))) |
|
scores[:] = np.nan |
|
|
|
print 'adjusting SVM (may take a long time) ...' |
|
def f(job): |
|
i, j = job |
|
samples, labels = self.get_dataset() |
|
params = dict(C = Cs[i], gamma=gammas[j]) |
|
score = cross_validate(SVM, params, samples, labels) |
|
return i, j, score |
|
|
|
ires = self.run_jobs(f, np.ndindex(*scores.shape)) |
|
for count, (i, j, score) in enumerate(ires): |
|
scores[i, j] = score |
|
print '%d / %d (best error: %.2f %%, last: %.2f %%)' % (count+1, scores.size, np.nanmin(scores)*100, score*100) |
|
print scores |
|
|
|
print 'writing score table to "svm_scores.npz"' |
|
np.savez('svm_scores.npz', scores=scores, Cs=Cs, gammas=gammas) |
|
|
|
i, j = np.unravel_index(scores.argmin(), scores.shape) |
|
best_params = dict(C = Cs[i], gamma=gammas[j]) |
|
print 'best params:', best_params |
|
print 'best error: %.2f %%' % (scores.min()*100) |
|
return best_params |
|
|
|
def adjust_KNearest(self): |
|
print 'adjusting KNearest ...' |
|
def f(k): |
|
samples, labels = self.get_dataset() |
|
err = cross_validate(KNearest, dict(k=k), samples, labels) |
|
return k, err |
|
best_err, best_k = np.inf, -1 |
|
for k, err in self.run_jobs(f, xrange(1, 9)): |
|
if err < best_err: |
|
best_err, best_k = err, k |
|
print 'k = %d, error: %.2f %%' % (k, err*100) |
|
best_params = dict(k=best_k) |
|
print 'best params:', best_params, 'err: %.2f' % (best_err*100) |
|
return best_params |
|
|
|
|
|
if __name__ == '__main__': |
|
import getopt |
|
import sys |
|
|
|
print __doc__ |
|
|
|
args, _ = getopt.getopt(sys.argv[1:], '', ['model=', 'cloud', 'env=']) |
|
args = dict(args) |
|
args.setdefault('--model', 'svm') |
|
args.setdefault('--env', '') |
|
if args['--model'] not in ['svm', 'knearest']: |
|
print 'unknown model "%s"' % args['--model'] |
|
sys.exit(1) |
|
|
|
t = clock() |
|
app = App(usecloud='--cloud' in args, cloud_env = args['--env']) |
|
if args['--model'] == 'knearest': |
|
app.adjust_KNearest() |
|
else: |
|
app.adjust_SVM() |
|
print 'work time: %f s' % (clock() - t)
|
|
|