Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

67 lines
2.4 KiB

#!/usr/bin/env python
'''
===============================================================================
Interactive Image Segmentation using GrabCut algorithm.
===============================================================================
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2
import sys
from tests_common import NewOpenCVTests
class grabcut_test(NewOpenCVTests):
def verify(self, mask, exp):
maxDiffRatio = 0.02
expArea = np.count_nonzero(exp)
nonIntersectArea = np.count_nonzero(mask != exp)
curRatio = float(nonIntersectArea) / expArea
return curRatio < maxDiffRatio
def scaleMask(self, mask):
return np.where((mask==cv2.GC_FGD) + (mask==cv2.GC_PR_FGD),255,0).astype('uint8')
def test_grabcut(self):
img = self.get_sample('cv/shared/airplane.png')
mask_prob = self.get_sample("cv/grabcut/mask_probpy.png", 0)
exp_mask1 = self.get_sample("cv/grabcut/exp_mask1py.png", 0)
exp_mask2 = self.get_sample("cv/grabcut/exp_mask2py.png", 0)
if img is None:
self.assertTrue(False, 'Missing test data')
rect = (24, 126, 459, 168)
mask = np.zeros(img.shape[:2], dtype = np.uint8)
bgdModel = np.zeros((1,65),np.float64)
fgdModel = np.zeros((1,65),np.float64)
cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 0, cv2.GC_INIT_WITH_RECT)
cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 2, cv2.GC_EVAL)
if mask_prob is None:
mask_prob = mask.copy()
cv2.imwrite(self.extraTestDataPath + '/cv/grabcut/mask_probpy.png', mask_prob)
if exp_mask1 is None:
exp_mask1 = self.scaleMask(mask)
cv2.imwrite(self.extraTestDataPath + '/cv/grabcut/exp_mask1py.png', exp_mask1)
self.assertEqual(self.verify(self.scaleMask(mask), exp_mask1), True)
mask = mask_prob
bgdModel = np.zeros((1,65),np.float64)
fgdModel = np.zeros((1,65),np.float64)
cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 0, cv2.GC_INIT_WITH_MASK)
cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 1, cv2.GC_EVAL)
if exp_mask2 is None:
exp_mask2 = self.scaleMask(mask)
cv2.imwrite(self.extraTestDataPath + '/cv/grabcut/exp_mask2py.png', exp_mask2)
self.assertEqual(self.verify(self.scaleMask(mask), exp_mask2), True)