mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
393 lines
12 KiB
393 lines
12 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
/****************************************************************************************\ |
|
* PCA * |
|
\****************************************************************************************/ |
|
|
|
namespace cv |
|
{ |
|
|
|
PCA::PCA() {} |
|
|
|
PCA::PCA(InputArray data, InputArray _mean, int flags, int maxComponents) |
|
{ |
|
operator()(data, _mean, flags, maxComponents); |
|
} |
|
|
|
PCA::PCA(InputArray data, InputArray _mean, int flags, double retainedVariance) |
|
{ |
|
operator()(data, _mean, flags, retainedVariance); |
|
} |
|
|
|
PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, int maxComponents) |
|
{ |
|
Mat data = _data.getMat(), _mean = __mean.getMat(); |
|
int covar_flags = CV_COVAR_SCALE; |
|
int len, in_count; |
|
Size mean_sz; |
|
|
|
CV_Assert( data.channels() == 1 ); |
|
if( flags & CV_PCA_DATA_AS_COL ) |
|
{ |
|
len = data.rows; |
|
in_count = data.cols; |
|
covar_flags |= CV_COVAR_COLS; |
|
mean_sz = Size(1, len); |
|
} |
|
else |
|
{ |
|
len = data.cols; |
|
in_count = data.rows; |
|
covar_flags |= CV_COVAR_ROWS; |
|
mean_sz = Size(len, 1); |
|
} |
|
|
|
int count = std::min(len, in_count), out_count = count; |
|
if( maxComponents > 0 ) |
|
out_count = std::min(count, maxComponents); |
|
|
|
// "scrambled" way to compute PCA (when cols(A)>rows(A)): |
|
// B = A'A; B*x=b*x; C = AA'; C*y=c*y -> AA'*y=c*y -> A'A*(A'*y)=c*(A'*y) -> c = b, x=A'*y |
|
if( len <= in_count ) |
|
covar_flags |= CV_COVAR_NORMAL; |
|
|
|
int ctype = std::max(CV_32F, data.depth()); |
|
mean.create( mean_sz, ctype ); |
|
|
|
Mat covar( count, count, ctype ); |
|
|
|
if( !_mean.empty() ) |
|
{ |
|
CV_Assert( _mean.size() == mean_sz ); |
|
_mean.convertTo(mean, ctype); |
|
covar_flags |= CV_COVAR_USE_AVG; |
|
} |
|
|
|
calcCovarMatrix( data, covar, mean, covar_flags, ctype ); |
|
eigen( covar, eigenvalues, eigenvectors ); |
|
|
|
if( !(covar_flags & CV_COVAR_NORMAL) ) |
|
{ |
|
// CV_PCA_DATA_AS_ROW: cols(A)>rows(A). x=A'*y -> x'=y'*A |
|
// CV_PCA_DATA_AS_COL: rows(A)>cols(A). x=A''*y -> x'=y'*A' |
|
Mat tmp_data, tmp_mean = repeat(mean, data.rows/mean.rows, data.cols/mean.cols); |
|
if( data.type() != ctype || tmp_mean.data == mean.data ) |
|
{ |
|
data.convertTo( tmp_data, ctype ); |
|
subtract( tmp_data, tmp_mean, tmp_data ); |
|
} |
|
else |
|
{ |
|
subtract( data, tmp_mean, tmp_mean ); |
|
tmp_data = tmp_mean; |
|
} |
|
|
|
Mat evects1(count, len, ctype); |
|
gemm( eigenvectors, tmp_data, 1, Mat(), 0, evects1, |
|
(flags & CV_PCA_DATA_AS_COL) ? CV_GEMM_B_T : 0); |
|
eigenvectors = evects1; |
|
|
|
// normalize eigenvectors |
|
int i; |
|
for( i = 0; i < out_count; i++ ) |
|
{ |
|
Mat vec = eigenvectors.row(i); |
|
normalize(vec, vec); |
|
} |
|
} |
|
|
|
if( count > out_count ) |
|
{ |
|
// use clone() to physically copy the data and thus deallocate the original matrices |
|
eigenvalues = eigenvalues.rowRange(0,out_count).clone(); |
|
eigenvectors = eigenvectors.rowRange(0,out_count).clone(); |
|
} |
|
return *this; |
|
} |
|
|
|
void PCA::write(FileStorage& fs ) const |
|
{ |
|
CV_Assert( fs.isOpened() ); |
|
|
|
fs << "name" << "PCA"; |
|
fs << "vectors" << eigenvectors; |
|
fs << "values" << eigenvalues; |
|
fs << "mean" << mean; |
|
} |
|
|
|
void PCA::read(const FileNode& fn) |
|
{ |
|
CV_Assert( !fn.empty() ); |
|
CV_Assert( (String)fn["name"] == "PCA" ); |
|
|
|
cv::read(fn["vectors"], eigenvectors); |
|
cv::read(fn["values"], eigenvalues); |
|
cv::read(fn["mean"], mean); |
|
} |
|
|
|
template <typename T> |
|
int computeCumulativeEnergy(const Mat& eigenvalues, double retainedVariance) |
|
{ |
|
CV_DbgAssert( eigenvalues.type() == DataType<T>::type ); |
|
|
|
Mat g(eigenvalues.size(), DataType<T>::type); |
|
|
|
for(int ig = 0; ig < g.rows; ig++) |
|
{ |
|
g.at<T>(ig, 0) = 0; |
|
for(int im = 0; im <= ig; im++) |
|
{ |
|
g.at<T>(ig,0) += eigenvalues.at<T>(im,0); |
|
} |
|
} |
|
|
|
int L; |
|
|
|
for(L = 0; L < eigenvalues.rows; L++) |
|
{ |
|
double energy = g.at<T>(L, 0) / g.at<T>(g.rows - 1, 0); |
|
if(energy > retainedVariance) |
|
break; |
|
} |
|
|
|
L = std::max(2, L); |
|
|
|
return L; |
|
} |
|
|
|
PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, double retainedVariance) |
|
{ |
|
Mat data = _data.getMat(), _mean = __mean.getMat(); |
|
int covar_flags = CV_COVAR_SCALE; |
|
int len, in_count; |
|
Size mean_sz; |
|
|
|
CV_Assert( data.channels() == 1 ); |
|
if( flags & CV_PCA_DATA_AS_COL ) |
|
{ |
|
len = data.rows; |
|
in_count = data.cols; |
|
covar_flags |= CV_COVAR_COLS; |
|
mean_sz = Size(1, len); |
|
} |
|
else |
|
{ |
|
len = data.cols; |
|
in_count = data.rows; |
|
covar_flags |= CV_COVAR_ROWS; |
|
mean_sz = Size(len, 1); |
|
} |
|
|
|
CV_Assert( retainedVariance > 0 && retainedVariance <= 1 ); |
|
|
|
int count = std::min(len, in_count); |
|
|
|
// "scrambled" way to compute PCA (when cols(A)>rows(A)): |
|
// B = A'A; B*x=b*x; C = AA'; C*y=c*y -> AA'*y=c*y -> A'A*(A'*y)=c*(A'*y) -> c = b, x=A'*y |
|
if( len <= in_count ) |
|
covar_flags |= CV_COVAR_NORMAL; |
|
|
|
int ctype = std::max(CV_32F, data.depth()); |
|
mean.create( mean_sz, ctype ); |
|
|
|
Mat covar( count, count, ctype ); |
|
|
|
if( !_mean.empty() ) |
|
{ |
|
CV_Assert( _mean.size() == mean_sz ); |
|
_mean.convertTo(mean, ctype); |
|
} |
|
|
|
calcCovarMatrix( data, covar, mean, covar_flags, ctype ); |
|
eigen( covar, eigenvalues, eigenvectors ); |
|
|
|
if( !(covar_flags & CV_COVAR_NORMAL) ) |
|
{ |
|
// CV_PCA_DATA_AS_ROW: cols(A)>rows(A). x=A'*y -> x'=y'*A |
|
// CV_PCA_DATA_AS_COL: rows(A)>cols(A). x=A''*y -> x'=y'*A' |
|
Mat tmp_data, tmp_mean = repeat(mean, data.rows/mean.rows, data.cols/mean.cols); |
|
if( data.type() != ctype || tmp_mean.data == mean.data ) |
|
{ |
|
data.convertTo( tmp_data, ctype ); |
|
subtract( tmp_data, tmp_mean, tmp_data ); |
|
} |
|
else |
|
{ |
|
subtract( data, tmp_mean, tmp_mean ); |
|
tmp_data = tmp_mean; |
|
} |
|
|
|
Mat evects1(count, len, ctype); |
|
gemm( eigenvectors, tmp_data, 1, Mat(), 0, evects1, |
|
(flags & CV_PCA_DATA_AS_COL) ? CV_GEMM_B_T : 0); |
|
eigenvectors = evects1; |
|
|
|
// normalize all eigenvectors |
|
int i; |
|
for( i = 0; i < eigenvectors.rows; i++ ) |
|
{ |
|
Mat vec = eigenvectors.row(i); |
|
normalize(vec, vec); |
|
} |
|
} |
|
|
|
// compute the cumulative energy content for each eigenvector |
|
int L; |
|
if (ctype == CV_32F) |
|
L = computeCumulativeEnergy<float>(eigenvalues, retainedVariance); |
|
else |
|
L = computeCumulativeEnergy<double>(eigenvalues, retainedVariance); |
|
|
|
// use clone() to physically copy the data and thus deallocate the original matrices |
|
eigenvalues = eigenvalues.rowRange(0,L).clone(); |
|
eigenvectors = eigenvectors.rowRange(0,L).clone(); |
|
|
|
return *this; |
|
} |
|
|
|
void PCA::project(InputArray _data, OutputArray result) const |
|
{ |
|
Mat data = _data.getMat(); |
|
CV_Assert( !mean.empty() && !eigenvectors.empty() && |
|
((mean.rows == 1 && mean.cols == data.cols) || (mean.cols == 1 && mean.rows == data.rows))); |
|
Mat tmp_data, tmp_mean = repeat(mean, data.rows/mean.rows, data.cols/mean.cols); |
|
int ctype = mean.type(); |
|
if( data.type() != ctype || tmp_mean.data == mean.data ) |
|
{ |
|
data.convertTo( tmp_data, ctype ); |
|
subtract( tmp_data, tmp_mean, tmp_data ); |
|
} |
|
else |
|
{ |
|
subtract( data, tmp_mean, tmp_mean ); |
|
tmp_data = tmp_mean; |
|
} |
|
if( mean.rows == 1 ) |
|
gemm( tmp_data, eigenvectors, 1, Mat(), 0, result, GEMM_2_T ); |
|
else |
|
gemm( eigenvectors, tmp_data, 1, Mat(), 0, result, 0 ); |
|
} |
|
|
|
Mat PCA::project(InputArray data) const |
|
{ |
|
Mat result; |
|
project(data, result); |
|
return result; |
|
} |
|
|
|
void PCA::backProject(InputArray _data, OutputArray result) const |
|
{ |
|
Mat data = _data.getMat(); |
|
CV_Assert( !mean.empty() && !eigenvectors.empty() && |
|
((mean.rows == 1 && eigenvectors.rows == data.cols) || |
|
(mean.cols == 1 && eigenvectors.rows == data.rows))); |
|
|
|
Mat tmp_data, tmp_mean; |
|
data.convertTo(tmp_data, mean.type()); |
|
if( mean.rows == 1 ) |
|
{ |
|
tmp_mean = repeat(mean, data.rows, 1); |
|
gemm( tmp_data, eigenvectors, 1, tmp_mean, 1, result, 0 ); |
|
} |
|
else |
|
{ |
|
tmp_mean = repeat(mean, 1, data.cols); |
|
gemm( eigenvectors, tmp_data, 1, tmp_mean, 1, result, GEMM_1_T ); |
|
} |
|
} |
|
|
|
Mat PCA::backProject(InputArray data) const |
|
{ |
|
Mat result; |
|
backProject(data, result); |
|
return result; |
|
} |
|
|
|
} |
|
|
|
void cv::PCACompute(InputArray data, InputOutputArray mean, |
|
OutputArray eigenvectors, int maxComponents) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
PCA pca; |
|
pca(data, mean, 0, maxComponents); |
|
pca.mean.copyTo(mean); |
|
pca.eigenvectors.copyTo(eigenvectors); |
|
} |
|
|
|
void cv::PCACompute(InputArray data, InputOutputArray mean, |
|
OutputArray eigenvectors, double retainedVariance) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
PCA pca; |
|
pca(data, mean, 0, retainedVariance); |
|
pca.mean.copyTo(mean); |
|
pca.eigenvectors.copyTo(eigenvectors); |
|
} |
|
|
|
void cv::PCAProject(InputArray data, InputArray mean, |
|
InputArray eigenvectors, OutputArray result) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
PCA pca; |
|
pca.mean = mean.getMat(); |
|
pca.eigenvectors = eigenvectors.getMat(); |
|
pca.project(data, result); |
|
} |
|
|
|
void cv::PCABackProject(InputArray data, InputArray mean, |
|
InputArray eigenvectors, OutputArray result) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
PCA pca; |
|
pca.mean = mean.getMat(); |
|
pca.eigenvectors = eigenvectors.getMat(); |
|
pca.backProject(data, result); |
|
}
|
|
|