mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
436 lines
11 KiB
436 lines
11 KiB
#include "perf_precomp.hpp" |
|
#include "opencv2/core/core_c.h" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace perf; |
|
|
|
|
|
/* |
|
// Scalar sum(InputArray arr) |
|
*/ |
|
PERF_TEST_P( Size_MatType, sum, TYPICAL_MATS ) |
|
{ |
|
Size sz = std::tr1::get<0>(GetParam()); |
|
int type = std::tr1::get<1>(GetParam()); |
|
|
|
Mat arr(sz, type); |
|
Scalar s; |
|
|
|
declare.in(arr, WARMUP_RNG); |
|
|
|
TEST_CYCLE(100) { s = sum(arr); } |
|
|
|
SANITY_CHECK(s); |
|
} |
|
|
|
|
|
/* |
|
// Scalar mean(InputArray src) |
|
*/ |
|
PERF_TEST_P( Size_MatType, mean, TYPICAL_MATS ) |
|
{ |
|
Size sz = std::tr1::get<0>(GetParam()); |
|
int type = std::tr1::get<1>(GetParam()); |
|
|
|
Mat src(sz, type); |
|
Scalar s; |
|
|
|
declare.in(src, WARMUP_RNG); |
|
|
|
TEST_CYCLE(100) { s = mean(src); } |
|
|
|
SANITY_CHECK(s); |
|
} |
|
|
|
|
|
/* |
|
// Scalar mean(InputArray src, InputArray mask=noArray()) |
|
*/ |
|
PERF_TEST_P( Size_MatType, mean_mask, TYPICAL_MATS ) |
|
{ |
|
Size sz = std::tr1::get<0>(GetParam()); |
|
int type = std::tr1::get<1>(GetParam()); |
|
|
|
Mat src(sz, type); |
|
Mat mask = Mat::ones(src.size(), CV_8U); |
|
Scalar s; |
|
|
|
declare.in(src, WARMUP_RNG).in(mask); |
|
|
|
TEST_CYCLE(100) { s = mean(src, mask); } |
|
|
|
SANITY_CHECK(s); |
|
} |
|
|
|
CV_FLAGS(NormType, NORM_INF, NORM_L1, NORM_L2, NORM_TYPE_MASK, NORM_RELATIVE, NORM_MINMAX) |
|
typedef std::tr1::tuple<Size, MatType, NormType> Size_MatType_NormType_t; |
|
typedef perf::TestBaseWithParam<Size_MatType_NormType_t> Size_MatType_NormType; |
|
|
|
/* |
|
// double norm(InputArray src1, int normType=NORM_L2) |
|
*/ |
|
PERF_TEST_P( Size_MatType_NormType, norm, |
|
testing::Combine( |
|
testing::Values( TYPICAL_MAT_SIZES ), |
|
testing::Values( TYPICAL_MAT_TYPES ), |
|
testing::Values( (int)NORM_INF, (int)NORM_L1, (int)NORM_L2 ) |
|
) |
|
) |
|
{ |
|
Size sz = std::tr1::get<0>(GetParam()); |
|
int matType = std::tr1::get<1>(GetParam()); |
|
int normType = std::tr1::get<2>(GetParam()); |
|
|
|
Mat src1(sz, matType); |
|
double n; |
|
|
|
declare.in(src1, WARMUP_RNG); |
|
|
|
TEST_CYCLE(100) { n = norm(src1, normType); } |
|
|
|
SANITY_CHECK(n); |
|
} |
|
|
|
|
|
/* |
|
// double norm(InputArray src1, int normType=NORM_L2, InputArray mask=noArray()) |
|
*/ |
|
PERF_TEST_P( Size_MatType_NormType, norm_mask, |
|
testing::Combine( |
|
testing::Values( TYPICAL_MAT_SIZES ), |
|
testing::Values( TYPICAL_MAT_TYPES ), |
|
testing::Values( (int)NORM_INF, (int)NORM_L1, (int)NORM_L2 ) |
|
) |
|
) |
|
{ |
|
Size sz = std::tr1::get<0>(GetParam()); |
|
int matType = std::tr1::get<1>(GetParam()); |
|
int normType = std::tr1::get<2>(GetParam()); |
|
|
|
Mat src1(sz, matType); |
|
Mat mask = Mat::ones(sz, CV_8U); |
|
double n; |
|
|
|
declare.in(src1, WARMUP_RNG).in(mask); |
|
|
|
TEST_CYCLE(100) { n = norm(src1, normType, mask); } |
|
|
|
SANITY_CHECK(n); |
|
} |
|
|
|
|
|
/* |
|
// double norm(InputArray src1, InputArray src2, int normType) |
|
*/ |
|
PERF_TEST_P( Size_MatType_NormType, norm2, |
|
testing::Combine( |
|
testing::Values( TYPICAL_MAT_SIZES ), |
|
testing::Values( TYPICAL_MAT_TYPES ), |
|
testing::Values( (int)NORM_INF, (int)NORM_L1, (int)NORM_L2, (int)(NORM_RELATIVE+NORM_INF), (int)(NORM_RELATIVE+NORM_L1), (int)(NORM_RELATIVE+NORM_L2) ) |
|
) |
|
) |
|
{ |
|
Size sz = std::tr1::get<0>(GetParam()); |
|
int matType = std::tr1::get<1>(GetParam()); |
|
int normType = std::tr1::get<2>(GetParam()); |
|
|
|
Mat src1(sz, matType); |
|
Mat src2(sz, matType); |
|
double n; |
|
|
|
declare.in(src1, src2, WARMUP_RNG); |
|
|
|
TEST_CYCLE(100) { n = norm(src1, src2, normType); } |
|
|
|
SANITY_CHECK(n); |
|
} |
|
|
|
|
|
/* |
|
// double norm(InputArray src1, InputArray src2, int normType, InputArray mask=noArray()) |
|
*/ |
|
PERF_TEST_P( Size_MatType_NormType, norm2_mask, |
|
testing::Combine( |
|
testing::Values( TYPICAL_MAT_SIZES ), |
|
testing::Values( TYPICAL_MAT_TYPES ), |
|
testing::Values( (int)NORM_INF, (int)NORM_L1, (int)NORM_L2, (int)(NORM_RELATIVE+NORM_INF), (int)(NORM_RELATIVE+NORM_L1), (int)(NORM_RELATIVE+NORM_L2) ) |
|
) |
|
) |
|
{ |
|
Size sz = std::tr1::get<0>(GetParam()); |
|
int matType = std::tr1::get<1>(GetParam()); |
|
int normType = std::tr1::get<2>(GetParam()); |
|
|
|
Mat src1(sz, matType); |
|
Mat src2(sz, matType); |
|
Mat mask = Mat::ones(sz, CV_8U); |
|
double n; |
|
|
|
declare.in(src1, src2, WARMUP_RNG).in(mask); |
|
|
|
TEST_CYCLE(100) { n = norm(src1, src2, normType, mask); } |
|
|
|
SANITY_CHECK(n); |
|
} |
|
|
|
|
|
/* |
|
// void normalize(const InputArray src, OutputArray dst, double alpha=1, double beta=0, int normType=NORM_L2) |
|
*/ |
|
PERF_TEST_P( Size_MatType_NormType, normalize, |
|
testing::Combine( |
|
testing::Values( TYPICAL_MAT_SIZES ), |
|
testing::Values( TYPICAL_MAT_TYPES ), |
|
testing::Values( (int)NORM_INF, (int)NORM_L1, (int)NORM_L2 ) |
|
) |
|
) |
|
{ |
|
Size sz = std::tr1::get<0>(GetParam()); |
|
int matType = std::tr1::get<1>(GetParam()); |
|
int normType = std::tr1::get<2>(GetParam()); |
|
|
|
Mat src(sz, matType); |
|
Mat dst(sz, matType); |
|
double alpha = 100.; |
|
if(normType==NORM_L1) alpha = (double)src.total() * src.channels(); |
|
if(normType==NORM_L2) alpha = (double)src.total()/10; |
|
|
|
declare.in(src, WARMUP_RNG).out(dst); |
|
|
|
TEST_CYCLE(100) { normalize(src, dst, alpha, 0., normType); } |
|
|
|
SANITY_CHECK(dst); |
|
} |
|
|
|
|
|
/* |
|
// void normalize(const InputArray src, OutputArray dst, double alpha=1, double beta=0, int normType=NORM_L2, int rtype=-1, InputArray mask=noArray()) |
|
*/ |
|
PERF_TEST_P( Size_MatType_NormType, normalize_mask, |
|
testing::Combine( |
|
testing::Values( TYPICAL_MAT_SIZES ), |
|
testing::Values( TYPICAL_MAT_TYPES ), |
|
testing::Values( (int)NORM_INF, (int)NORM_L1, (int)NORM_L2 ) |
|
) |
|
) |
|
{ |
|
Size sz = std::tr1::get<0>(GetParam()); |
|
int matType = std::tr1::get<1>(GetParam()); |
|
int normType = std::tr1::get<2>(GetParam()); |
|
|
|
Mat src(sz, matType); |
|
Mat dst(sz, matType); |
|
Mat mask = Mat::ones(sz, CV_8U); |
|
double alpha = 100.; |
|
if(normType==NORM_L1) alpha = (double)src.total() * src.channels(); |
|
if(normType==NORM_L2) alpha = (double)src.total()/10; |
|
|
|
declare.in(src, WARMUP_RNG).in(mask).out(dst); |
|
|
|
TEST_CYCLE(100) { normalize(src, dst, alpha, 0., normType, -1, mask); } |
|
|
|
SANITY_CHECK(dst); |
|
} |
|
|
|
|
|
/* |
|
// void normalize(const InputArray src, OutputArray dst, double alpha=1, double beta=0, int normType=NORM_L2, int rtype=-1) |
|
*/ |
|
PERF_TEST_P( Size_MatType_NormType, normalize_32f, |
|
testing::Combine( |
|
testing::Values( TYPICAL_MAT_SIZES ), |
|
testing::Values( TYPICAL_MAT_TYPES ), |
|
testing::Values( (int)NORM_INF, (int)NORM_L1, (int)NORM_L2 ) |
|
) |
|
) |
|
{ |
|
Size sz = std::tr1::get<0>(GetParam()); |
|
int matType = std::tr1::get<1>(GetParam()); |
|
int normType = std::tr1::get<2>(GetParam()); |
|
|
|
Mat src(sz, matType); |
|
Mat dst(sz, matType); |
|
double alpha = 100.; |
|
if(normType==NORM_L1) alpha = (double)src.total() * src.channels(); |
|
if(normType==NORM_L2) alpha = (double)src.total()/10; |
|
|
|
declare.in(src, WARMUP_RNG).out(dst); |
|
|
|
TEST_CYCLE(100) { normalize(src, dst, alpha, 0., normType, CV_32F); } |
|
|
|
SANITY_CHECK(dst); |
|
} |
|
|
|
|
|
/* |
|
// void normalize(const InputArray src, OutputArray dst, double alpha=1, double beta=0, int normType=NORM_L2) |
|
*/ |
|
PERF_TEST_P( Size_MatType, normalize_minmax, TYPICAL_MATS ) |
|
{ |
|
Size sz = std::tr1::get<0>(GetParam()); |
|
int matType = std::tr1::get<1>(GetParam()); |
|
|
|
Mat src(sz, matType); |
|
randu(src, 0, 256); |
|
Mat dst(sz, matType); |
|
|
|
declare.in(src).out(dst); |
|
|
|
TEST_CYCLE(100) { normalize(src, dst, 20., 100., NORM_MINMAX); } |
|
|
|
SANITY_CHECK(dst); |
|
} |
|
|
|
|
|
/* |
|
// void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev) |
|
*/ |
|
PERF_TEST_P( Size_MatType, meanStdDev, TYPICAL_MATS ) |
|
{ |
|
Size sz = std::tr1::get<0>(GetParam()); |
|
int matType = std::tr1::get<1>(GetParam()); |
|
|
|
Mat src(sz, matType); |
|
Mat mean, dev; |
|
|
|
declare.in(src, WARMUP_RNG); |
|
|
|
TEST_CYCLE(100) { meanStdDev(src, mean, dev); } |
|
|
|
SANITY_CHECK(mean); |
|
SANITY_CHECK(dev); |
|
} |
|
|
|
|
|
/* |
|
// void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev, InputArray mask=noArray()) |
|
*/ |
|
PERF_TEST_P( Size_MatType, meanStdDev_mask, TYPICAL_MATS ) |
|
{ |
|
Size sz = std::tr1::get<0>(GetParam()); |
|
int matType = std::tr1::get<1>(GetParam()); |
|
|
|
Mat src(sz, matType); |
|
Mat mask = Mat::ones(sz, CV_8U); |
|
Mat mean, dev; |
|
|
|
declare.in(src, WARMUP_RNG).in(mask); |
|
|
|
TEST_CYCLE(100) { meanStdDev(src, mean, dev, mask); } |
|
|
|
SANITY_CHECK(mean); |
|
SANITY_CHECK(dev); |
|
} |
|
|
|
|
|
/* |
|
// int countNonZero(InputArray mtx) |
|
*/ |
|
PERF_TEST_P( Size_MatType, countNonZero, TYPICAL_MATS_C1 ) |
|
{ |
|
Size sz = std::tr1::get<0>(GetParam()); |
|
int matType = std::tr1::get<1>(GetParam()); |
|
|
|
Mat src(sz, matType); |
|
int cnt = 0; |
|
|
|
declare.in(src, WARMUP_RNG); |
|
|
|
TEST_CYCLE(100) { cnt = countNonZero(src); } |
|
|
|
SANITY_CHECK(cnt); |
|
} |
|
|
|
/* |
|
// void minMaxLoc(InputArray src, double* minVal, double* maxVal=0, Point* minLoc=0, Point* maxLoc=0, InputArray mask=noArray()) |
|
*/ |
|
PERF_TEST_P( Size_MatType, minMaxLoc, testing::Combine( |
|
testing::Values( TYPICAL_MAT_SIZES ), |
|
testing::Values( CV_8UC1, CV_8SC1, CV_16UC1, CV_16SC1, CV_32SC1, CV_32FC1, CV_64FC1 ) ) ) |
|
{ |
|
Size sz = std::tr1::get<0>(GetParam()); |
|
int matType = std::tr1::get<1>(GetParam()); |
|
|
|
Mat src(sz, matType); |
|
double minVal, maxVal; |
|
Point minLoc, maxLoc; |
|
|
|
// avoid early exit on 1 byte data |
|
if (matType == CV_8U) |
|
randu(src, 1, 254); |
|
else if (matType == CV_8S) |
|
randu(src, -127, 126); |
|
else |
|
warmup(src, WARMUP_RNG); |
|
|
|
declare.in(src); |
|
|
|
TEST_CYCLE(100) { minMaxLoc(src, &minVal, &maxVal, &minLoc, &maxLoc); } |
|
|
|
SANITY_CHECK(minVal); |
|
SANITY_CHECK(maxVal); |
|
} |
|
|
|
|
|
|
|
CV_ENUM(ROp, CV_REDUCE_SUM, CV_REDUCE_AVG, CV_REDUCE_MAX, CV_REDUCE_MIN) |
|
typedef std::tr1::tuple<Size, MatType, ROp> Size_MatType_ROp_t; |
|
typedef perf::TestBaseWithParam<Size_MatType_ROp_t> Size_MatType_ROp; |
|
|
|
|
|
/* |
|
// void reduce(InputArray mtx, OutputArray vec, int dim, int reduceOp, int dtype=-1) |
|
*/ |
|
PERF_TEST_P( Size_MatType_ROp, reduceR, |
|
testing::Combine( |
|
testing::Values( TYPICAL_MAT_SIZES ), |
|
testing::Values( TYPICAL_MAT_TYPES ), |
|
testing::Values( CV_REDUCE_SUM, CV_REDUCE_AVG, CV_REDUCE_MAX, CV_REDUCE_MIN ) |
|
) |
|
) |
|
{ |
|
Size sz = std::tr1::get<0>(GetParam()); |
|
int matType = std::tr1::get<1>(GetParam()); |
|
int reduceOp = std::tr1::get<2>(GetParam()); |
|
|
|
int ddepth = -1; |
|
if( CV_MAT_DEPTH(matType)< CV_32S && (reduceOp == CV_REDUCE_SUM || reduceOp == CV_REDUCE_AVG) ) |
|
ddepth = CV_32S; |
|
Mat src(sz, matType); |
|
Mat vec; |
|
|
|
declare.in(src, WARMUP_RNG); |
|
|
|
TEST_CYCLE(100) { reduce(src, vec, 0, reduceOp, ddepth); } |
|
|
|
SANITY_CHECK(vec); |
|
} |
|
|
|
/* |
|
// void reduce(InputArray mtx, OutputArray vec, int dim, int reduceOp, int dtype=-1) |
|
*/ |
|
PERF_TEST_P( Size_MatType_ROp, reduceC, |
|
testing::Combine( |
|
testing::Values( TYPICAL_MAT_SIZES ), |
|
testing::Values( TYPICAL_MAT_TYPES ), |
|
testing::Values( CV_REDUCE_SUM, CV_REDUCE_AVG, CV_REDUCE_MAX, CV_REDUCE_MIN ) |
|
) |
|
) |
|
{ |
|
Size sz = std::tr1::get<0>(GetParam()); |
|
int matType = std::tr1::get<1>(GetParam()); |
|
int reduceOp = std::tr1::get<2>(GetParam()); |
|
|
|
int ddepth = -1; |
|
if( CV_MAT_DEPTH(matType)< CV_32S && (reduceOp == CV_REDUCE_SUM || reduceOp == CV_REDUCE_AVG) ) |
|
ddepth = CV_32S; |
|
Mat src(sz, matType); |
|
Mat vec; |
|
|
|
declare.in(src, WARMUP_RNG); |
|
|
|
TEST_CYCLE(100) { reduce(src, vec, 1, reduceOp, ddepth); } |
|
|
|
SANITY_CHECK(vec); |
|
}
|
|
|