mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
236 lines
9.4 KiB
236 lines
9.4 KiB
#!/usr/bin/env python |
|
''' |
|
You can download a baseline ReID model and sample input from: |
|
https://github.com/ReID-Team/ReID_extra_testdata |
|
|
|
Authors of samples and Youtu ReID baseline: |
|
Xing Sun <winfredsun@tencent.com> |
|
Feng Zheng <zhengf@sustech.edu.cn> |
|
Xinyang Jiang <sevjiang@tencent.com> |
|
Fufu Yu <fufuyu@tencent.com> |
|
Enwei Zhang <miyozhang@tencent.com> |
|
|
|
Copyright (C) 2020-2021, Tencent. |
|
Copyright (C) 2020-2021, SUSTech. |
|
''' |
|
import argparse |
|
import os.path |
|
import numpy as np |
|
import cv2 as cv |
|
|
|
backends = (cv.dnn.DNN_BACKEND_DEFAULT, |
|
cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, |
|
cv.dnn.DNN_BACKEND_OPENCV, |
|
cv.dnn.DNN_BACKEND_CUDA) |
|
|
|
targets = (cv.dnn.DNN_TARGET_CPU, |
|
cv.dnn.DNN_TARGET_OPENCL, |
|
cv.dnn.DNN_TARGET_OPENCL_FP16, |
|
cv.dnn.DNN_TARGET_MYRIAD, |
|
cv.dnn.DNN_TARGET_HDDL, |
|
cv.dnn.DNN_TARGET_CUDA, |
|
cv.dnn.DNN_TARGET_CUDA_FP16) |
|
|
|
MEAN = (0.485, 0.456, 0.406) |
|
STD = (0.229, 0.224, 0.225) |
|
|
|
def preprocess(images, height, width): |
|
""" |
|
Create 4-dimensional blob from image |
|
:param image: input image |
|
:param height: the height of the resized input image |
|
:param width: the width of the resized input image |
|
""" |
|
img_list = [] |
|
for image in images: |
|
image = cv.resize(image, (width, height)) |
|
img_list.append(image[:, :, ::-1]) |
|
|
|
images = np.array(img_list) |
|
images = (images / 255.0 - MEAN) / STD |
|
|
|
input = cv.dnn.blobFromImages(images.astype(np.float32), ddepth = cv.CV_32F) |
|
return input |
|
|
|
def extract_feature(img_dir, model_path, batch_size = 32, resize_h = 384, resize_w = 128, backend=cv.dnn.DNN_BACKEND_OPENCV, target=cv.dnn.DNN_TARGET_CPU): |
|
""" |
|
Extract features from images in a target directory |
|
:param img_dir: the input image directory |
|
:param model_path: path to ReID model |
|
:param batch_size: the batch size for each network inference iteration |
|
:param resize_h: the height of the input image |
|
:param resize_w: the width of the input image |
|
:param backend: name of computation backend |
|
:param target: name of computation target |
|
""" |
|
feat_list = [] |
|
path_list = os.listdir(img_dir) |
|
path_list = [os.path.join(img_dir, img_name) for img_name in path_list] |
|
count = 0 |
|
|
|
for i in range(0, len(path_list), batch_size): |
|
print('Feature Extraction for images in', img_dir, 'Batch:', count, '/', len(path_list)) |
|
batch = path_list[i : min(i + batch_size, len(path_list))] |
|
imgs = read_data(batch) |
|
inputs = preprocess(imgs, resize_h, resize_w) |
|
|
|
feat = run_net(inputs, model_path, backend, target) |
|
|
|
feat_list.append(feat) |
|
count += batch_size |
|
|
|
feats = np.concatenate(feat_list, axis = 0) |
|
return feats, path_list |
|
|
|
def run_net(inputs, model_path, backend=cv.dnn.DNN_BACKEND_OPENCV, target=cv.dnn.DNN_TARGET_CPU): |
|
""" |
|
Forword propagation for a batch of images. |
|
:param inputs: input batch of images |
|
:param model_path: path to ReID model |
|
:param backend: name of computation backend |
|
:param target: name of computation target |
|
""" |
|
net = cv.dnn.readNet(model_path) |
|
net.setPreferableBackend(backend) |
|
net.setPreferableTarget(target) |
|
net.setInput(inputs) |
|
out = net.forward() |
|
out = np.reshape(out, (out.shape[0], out.shape[1])) |
|
return out |
|
|
|
def read_data(path_list): |
|
""" |
|
Read all images from a directory into a list |
|
:param path_list: the list of image path |
|
""" |
|
img_list = [] |
|
for img_path in path_list: |
|
img = cv.imread(img_path) |
|
if img is None: |
|
continue |
|
img_list.append(img) |
|
return img_list |
|
|
|
def normalize(nparray, order=2, axis=0): |
|
""" |
|
Normalize a N-D numpy array along the specified axis. |
|
:param nparry: the array of vectors to be normalized |
|
:param order: order of the norm |
|
:param axis: the axis of x along which to compute the vector norms |
|
""" |
|
norm = np.linalg.norm(nparray, ord=order, axis=axis, keepdims=True) |
|
return nparray / (norm + np.finfo(np.float32).eps) |
|
|
|
def similarity(array1, array2): |
|
""" |
|
Compute the euclidean or cosine distance of all pairs. |
|
:param array1: numpy array with shape [m1, n] |
|
:param array2: numpy array with shape [m2, n] |
|
Returns: |
|
numpy array with shape [m1, m2] |
|
""" |
|
array1 = normalize(array1, axis=1) |
|
array2 = normalize(array2, axis=1) |
|
dist = np.matmul(array1, array2.T) |
|
return dist |
|
|
|
def topk(query_feat, gallery_feat, topk = 5): |
|
""" |
|
Return the index of top K gallery images most similar to the query images |
|
:param query_feat: array of feature vectors of query images |
|
:param gallery_feat: array of feature vectors of gallery images |
|
:param topk: number of gallery images to return |
|
""" |
|
sim = similarity(query_feat, gallery_feat) |
|
index = np.argsort(-sim, axis = 1) |
|
return [i[0:int(topk)] for i in index] |
|
|
|
def drawRankList(query_name, gallery_list, output_size = (128, 384)): |
|
""" |
|
Draw the rank list |
|
:param query_name: path of the query image |
|
:param gallery_name: path of the gallery image |
|
"param output_size: the output size of each image in the rank list |
|
""" |
|
def addBorder(im, color): |
|
bordersize = 5 |
|
border = cv.copyMakeBorder( |
|
im, |
|
top = bordersize, |
|
bottom = bordersize, |
|
left = bordersize, |
|
right = bordersize, |
|
borderType = cv.BORDER_CONSTANT, |
|
value = color |
|
) |
|
return border |
|
query_img = cv.imread(query_name) |
|
query_img = cv.resize(query_img, output_size) |
|
query_img = addBorder(query_img, [0, 0, 0]) |
|
cv.putText(query_img, 'Query', (10, 30), cv.FONT_HERSHEY_COMPLEX, 1., (0,255,0), 2) |
|
|
|
gallery_img_list = [] |
|
for i, gallery_name in enumerate(gallery_list): |
|
gallery_img = cv.imread(gallery_name) |
|
gallery_img = cv.resize(gallery_img, output_size) |
|
gallery_img = addBorder(gallery_img, [255, 255, 255]) |
|
cv.putText(gallery_img, 'G%02d'%i, (10, 30), cv.FONT_HERSHEY_COMPLEX, 1., (0,255,0), 2) |
|
gallery_img_list.append(gallery_img) |
|
ret = np.concatenate([query_img] + gallery_img_list, axis = 1) |
|
return ret |
|
|
|
|
|
def visualization(topk_idx, query_names, gallery_names, output_dir = 'vis'): |
|
""" |
|
Visualize the retrieval results with the person ReID model |
|
:param topk_idx: the index of ranked gallery images for each query image |
|
:param query_names: the list of paths of query images |
|
:param gallery_names: the list of paths of gallery images |
|
:param output_dir: the path to save the visualize results |
|
""" |
|
if not os.path.exists(output_dir): |
|
os.mkdir(output_dir) |
|
for i, idx in enumerate(topk_idx): |
|
query_name = query_names[i] |
|
topk_names = [gallery_names[j] for j in idx] |
|
vis_img = drawRankList(query_name, topk_names) |
|
output_path = os.path.join(output_dir, '%03d_%s'%(i, os.path.basename(query_name))) |
|
cv.imwrite(output_path, vis_img) |
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser(description='Use this script to run human parsing using JPPNet', |
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
|
parser.add_argument('--query_dir', '-q', required=True, help='Path to query image.') |
|
parser.add_argument('--gallery_dir', '-g', required=True, help='Path to gallery directory.') |
|
parser.add_argument('--resize_h', default = 256, help='The height of the input for model inference.') |
|
parser.add_argument('--resize_w', default = 128, help='The width of the input for model inference') |
|
parser.add_argument('--model', '-m', default='reid.onnx', help='Path to pb model.') |
|
parser.add_argument('--visualization_dir', default='vis', help='Path for the visualization results') |
|
parser.add_argument('--topk', default=10, help='Number of images visualized in the rank list') |
|
parser.add_argument('--batchsize', default=32, help='The batch size of each inference') |
|
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int, |
|
help="Choose one of computation backends: " |
|
"%d: automatically (by default), " |
|
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), " |
|
"%d: OpenCV implementation" |
|
"%d: CUDA backend"% backends) |
|
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int, |
|
help='Choose one of target computation devices: ' |
|
'%d: CPU target (by default), ' |
|
'%d: OpenCL, ' |
|
'%d: OpenCL fp16 (half-float precision), ' |
|
'%d: NCS2 VPU, ' |
|
'%d: HDDL VPU' |
|
'%d: CUDA,' |
|
'%d: CUDA FP16,' |
|
% targets) |
|
args, _ = parser.parse_known_args() |
|
|
|
if not os.path.isfile(args.model): |
|
raise OSError("Model not exist") |
|
|
|
query_feat, query_names = extract_feature(args.query_dir, args.model, args.batchsize, args.resize_h, args.resize_w, args.backend, args.target) |
|
gallery_feat, gallery_names = extract_feature(args.gallery_dir, args.model, args.batchsize, args.resize_h, args.resize_w, args.backend, args.target) |
|
|
|
topk_idx = topk(query_feat, gallery_feat, args.topk) |
|
visualization(topk_idx, query_names, gallery_names, output_dir = args.visualization_dir)
|
|
|