mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1342 lines
44 KiB
1342 lines
44 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T> static inline Scalar rawToScalar(const T& v) |
|
{ |
|
Scalar s; |
|
typedef typename DataType<T>::channel_type T1; |
|
int i, n = DataType<T>::channels; |
|
for( i = 0; i < n; i++ ) |
|
s.val[i] = ((T1*)&v)[i]; |
|
return s; |
|
} |
|
|
|
/****************************************************************************************\ |
|
* sum * |
|
\****************************************************************************************/ |
|
|
|
template<typename T, typename WT, typename ST, int BLOCK_SIZE> |
|
static Scalar sumBlock_( const Mat& srcmat ) |
|
{ |
|
assert( DataType<T>::type == srcmat.type() ); |
|
Size size = getContinuousSize( srcmat ); |
|
ST s0 = 0; |
|
WT s = 0; |
|
int y, remaining = BLOCK_SIZE; |
|
|
|
for( y = 0; y < size.height; y++ ) |
|
{ |
|
const T* src = (const T*)(srcmat.data + srcmat.step*y); |
|
int x = 0; |
|
while( x < size.width ) |
|
{ |
|
int limit = std::min( remaining, size.width - x ); |
|
remaining -= limit; |
|
limit += x; |
|
for( ; x <= limit - 4; x += 4 ) |
|
{ |
|
s += src[x]; |
|
s += src[x+1]; |
|
s += src[x+2]; |
|
s += src[x+3]; |
|
} |
|
for( ; x < limit; x++ ) |
|
s += src[x]; |
|
if( remaining == 0 || (x == size.width && y == size.height-1) ) |
|
{ |
|
s0 += s; |
|
s = 0; |
|
remaining = BLOCK_SIZE; |
|
} |
|
} |
|
} |
|
return rawToScalar(s0); |
|
} |
|
|
|
template<typename T, typename ST> |
|
static Scalar sum_( const Mat& srcmat ) |
|
{ |
|
assert( DataType<T>::type == srcmat.type() ); |
|
Size size = getContinuousSize( srcmat ); |
|
ST s = 0; |
|
|
|
for( int y = 0; y < size.height; y++ ) |
|
{ |
|
const T* src = (const T*)(srcmat.data + srcmat.step*y); |
|
int x = 0; |
|
for( ; x <= size.width - 4; x += 4 ) |
|
{ |
|
s += src[x]; |
|
s += src[x+1]; |
|
s += src[x+2]; |
|
s += src[x+3]; |
|
} |
|
for( ; x < size.width; x++ ) |
|
s += src[x]; |
|
} |
|
return rawToScalar(s); |
|
} |
|
|
|
typedef Scalar (*SumFunc)(const Mat& src); |
|
|
|
Scalar sum( const Mat& m ) |
|
{ |
|
static SumFunc tab[]= |
|
{ |
|
sumBlock_<uchar, unsigned, double, 1<<24>, |
|
sumBlock_<schar, int, double, 1<<24>, |
|
sumBlock_<ushort, unsigned, double, 1<<16>, |
|
sumBlock_<short, int, double, 1<<16>, |
|
sum_<int, double>, |
|
sum_<float, double>, |
|
sum_<double, double>, 0, |
|
|
|
sumBlock_<Vec<uchar, 2>, Vec<unsigned, 2>, Vec<double, 2>, 1<<24>, |
|
sumBlock_<Vec<schar, 2>, Vec<int, 2>, Vec<double, 2>, 1<<24>, |
|
sumBlock_<Vec<ushort, 2>, Vec<unsigned, 2>, Vec<double, 2>, 1<<16>, |
|
sumBlock_<Vec<short, 2>, Vec<int, 2>, Vec<double, 2>, 1<<16>, |
|
sum_<Vec<int, 2>, Vec<double, 2> >, |
|
sum_<Vec<float, 2>, Vec<double, 2> >, |
|
sum_<Vec<double, 2>, Vec<double, 2> >, 0, |
|
|
|
sumBlock_<Vec<uchar, 3>, Vec<unsigned, 3>, Vec<double, 3>, 1<<24>, |
|
sumBlock_<Vec<schar, 3>, Vec<int, 3>, Vec<double, 3>, 1<<24>, |
|
sumBlock_<Vec<ushort, 3>, Vec<unsigned, 3>, Vec<double, 3>, 1<<16>, |
|
sumBlock_<Vec<short, 3>, Vec<int, 3>, Vec<double, 3>, 1<<16>, |
|
sum_<Vec<int, 3>, Vec<double, 3> >, |
|
sum_<Vec<float, 3>, Vec<double, 3> >, |
|
sum_<Vec<double, 3>, Vec<double, 3> >, 0, |
|
|
|
sumBlock_<Vec<uchar, 4>, Vec<unsigned, 4>, Vec<double, 4>, 1<<24>, |
|
sumBlock_<Vec<schar, 4>, Vec<int, 4>, Vec<double, 4>, 1<<24>, |
|
sumBlock_<Vec<ushort, 4>, Vec<unsigned, 4>, Vec<double, 4>, 1<<16>, |
|
sumBlock_<Vec<short, 4>, Vec<int, 4>, Vec<double, 4>, 1<<16>, |
|
sum_<Vec<int, 4>, Vec<double, 4> >, |
|
sum_<Vec<float, 4>, Vec<double, 4> >, |
|
sum_<Vec<double, 4>, Vec<double, 4> >, 0 |
|
}; |
|
|
|
Size size = m.size(); |
|
SumFunc func; |
|
|
|
CV_Assert( m.channels() <= 4 ); |
|
|
|
func = tab[m.type()]; |
|
CV_Assert( func != 0 ); |
|
|
|
return func(m); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* countNonZero * |
|
\****************************************************************************************/ |
|
|
|
template<typename T> |
|
static int countNonZero_( const Mat& srcmat ) |
|
{ |
|
//assert( DataType<T>::type == srcmat.type() ); |
|
const T* src = (const T*)srcmat.data; |
|
size_t step = srcmat.step/sizeof(src[0]); |
|
Size size = getContinuousSize( srcmat ); |
|
int nz = 0; |
|
|
|
for( ; size.height--; src += step ) |
|
{ |
|
int x = 0; |
|
for( ; x <= size.width - 4; x += 4 ) |
|
nz += (src[x] != 0) + (src[x+1] != 0) + (src[x+2] != 0) + (src[x+3] != 0); |
|
for( ; x < size.width; x++ ) |
|
nz += src[x] != 0; |
|
} |
|
return nz; |
|
} |
|
|
|
typedef int (*CountNonZeroFunc)(const Mat& src); |
|
|
|
int countNonZero( const Mat& m ) |
|
{ |
|
static CountNonZeroFunc tab[] = |
|
{ |
|
countNonZero_<uchar>, countNonZero_<uchar>, countNonZero_<ushort>, |
|
countNonZero_<ushort>, countNonZero_<int>, countNonZero_<float>, |
|
countNonZero_<double>, 0 |
|
}; |
|
|
|
CountNonZeroFunc func = tab[m.depth()]; |
|
CV_Assert( m.channels() == 1 && func != 0 ); |
|
return func(m); |
|
} |
|
|
|
|
|
/****************************************************************************************\ |
|
* mean * |
|
\****************************************************************************************/ |
|
|
|
template<typename T, typename WT, typename ST, int BLOCK_SIZE> |
|
static Scalar meanBlock_( const Mat& srcmat, const Mat& maskmat ) |
|
{ |
|
assert( DataType<T>::type == srcmat.type() && |
|
CV_8U == maskmat.type() && srcmat.size() == maskmat.size() ); |
|
Size size = getContinuousSize( srcmat, maskmat ); |
|
ST s0 = 0; |
|
WT s = 0; |
|
int y, remaining = BLOCK_SIZE, pix = 0; |
|
|
|
for( y = 0; y < size.height; y++ ) |
|
{ |
|
const T* src = (const T*)(srcmat.data + srcmat.step*y); |
|
const uchar* mask = maskmat.data + maskmat.step*y; |
|
int x = 0; |
|
while( x < size.width ) |
|
{ |
|
int limit = std::min( remaining, size.width - x ); |
|
remaining -= limit; |
|
limit += x; |
|
for( ; x < limit; x++ ) |
|
if( mask[x] ) |
|
s += src[x], pix++; |
|
if( remaining == 0 || (x == size.width && y == size.height-1) ) |
|
{ |
|
s0 += s; |
|
s = 0; |
|
remaining = BLOCK_SIZE; |
|
} |
|
} |
|
} |
|
return rawToScalar(s0)*(1./std::max(pix, 1)); |
|
} |
|
|
|
|
|
template<typename T, typename ST> |
|
static Scalar mean_( const Mat& srcmat, const Mat& maskmat ) |
|
{ |
|
assert( DataType<T>::type == srcmat.type() && |
|
CV_8U == maskmat.type() && srcmat.size() == maskmat.size() ); |
|
Size size = getContinuousSize( srcmat, maskmat ); |
|
ST s = 0; |
|
int y, pix = 0; |
|
|
|
for( y = 0; y < size.height; y++ ) |
|
{ |
|
const T* src = (const T*)(srcmat.data + srcmat.step*y); |
|
const uchar* mask = maskmat.data + maskmat.step*y; |
|
for( int x = 0; x < size.width; x++ ) |
|
if( mask[x] ) |
|
s += src[x], pix++; |
|
} |
|
return rawToScalar(s)*(1./std::max(pix, 1)); |
|
} |
|
|
|
typedef Scalar (*MeanMaskFunc)(const Mat& src, const Mat& mask); |
|
|
|
Scalar mean(const Mat& m) |
|
{ |
|
return sum(m)*(1./std::max(m.rows*m.cols, 1)); |
|
} |
|
|
|
Scalar mean( const Mat& m, const Mat& mask ) |
|
{ |
|
static MeanMaskFunc tab[]= |
|
{ |
|
meanBlock_<uchar, unsigned, double, 1<<24>, 0, |
|
meanBlock_<ushort, unsigned, double, 1<<16>, |
|
meanBlock_<short, int, double, 1<<16>, |
|
mean_<int, double>, |
|
mean_<float, double>, |
|
mean_<double, double>, 0, |
|
|
|
meanBlock_<Vec<uchar, 2>, Vec<unsigned, 2>, Vec<double, 2>, 1<<24>, 0, |
|
meanBlock_<Vec<ushort, 2>, Vec<unsigned, 2>, Vec<double, 2>, 1<<16>, |
|
meanBlock_<Vec<short, 2>, Vec<int, 2>, Vec<double, 2>, 1<<16>, |
|
mean_<Vec<int, 2>, Vec<double, 2> >, |
|
mean_<Vec<float, 2>, Vec<double, 2> >, |
|
mean_<Vec<double, 2>, Vec<double, 2> >, 0, |
|
|
|
meanBlock_<Vec<uchar, 3>, Vec<unsigned, 3>, Vec<double, 3>, 1<<24>, 0, |
|
meanBlock_<Vec<ushort, 3>, Vec<unsigned, 3>, Vec<double, 3>, 1<<16>, |
|
meanBlock_<Vec<short, 3>, Vec<int, 3>, Vec<double, 3>, 1<<16>, |
|
mean_<Vec<int, 3>, Vec<double, 3> >, |
|
mean_<Vec<float, 3>, Vec<double, 3> >, |
|
mean_<Vec<double, 3>, Vec<double, 3> >, 0, |
|
|
|
meanBlock_<Vec<uchar, 4>, Vec<unsigned, 4>, Vec<double, 4>, 1<<24>, 0, |
|
meanBlock_<Vec<ushort, 4>, Vec<unsigned, 4>, Vec<double, 4>, 1<<16>, |
|
meanBlock_<Vec<short, 4>, Vec<int, 4>, Vec<double, 4>, 1<<16>, |
|
mean_<Vec<int, 4>, Vec<double, 4> >, |
|
mean_<Vec<float, 4>, Vec<double, 4> >, |
|
mean_<Vec<double, 4>, Vec<double, 4> >, 0 |
|
}; |
|
|
|
if( !mask.data ) |
|
return mean(m); |
|
|
|
CV_Assert( m.channels() <= 4 && m.size() == mask.size() && mask.type() == CV_8U ); |
|
|
|
MeanMaskFunc func = tab[m.type()]; |
|
CV_Assert( func != 0 ); |
|
|
|
return func( m, mask ); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* meanStdDev * |
|
\****************************************************************************************/ |
|
|
|
template<typename T, typename SqT> struct SqrC1 |
|
{ |
|
typedef T type1; |
|
typedef SqT rtype; |
|
rtype operator()(type1 x) const { return (SqT)x*x; } |
|
}; |
|
|
|
template<typename T, typename SqT> struct SqrC2 |
|
{ |
|
typedef Vec<T, 2> type1; |
|
typedef Vec<SqT, 2> rtype; |
|
rtype operator()(const type1& x) const { return rtype((SqT)x[0]*x[0], (SqT)x[1]*x[1]); } |
|
}; |
|
|
|
template<typename T, typename SqT> struct SqrC3 |
|
{ |
|
typedef Vec<T, 3> type1; |
|
typedef Vec<SqT, 3> rtype; |
|
rtype operator()(const type1& x) const |
|
{ return rtype((SqT)x[0]*x[0], (SqT)x[1]*x[1], (SqT)x[2]*x[2]); } |
|
}; |
|
|
|
template<typename T, typename SqT> struct SqrC4 |
|
{ |
|
typedef Vec<T, 4> type1; |
|
typedef Vec<SqT, 4> rtype; |
|
rtype operator()(const type1& x) const |
|
{ return rtype((SqT)x[0]*x[0], (SqT)x[1]*x[1], (SqT)x[2]*x[2], (SqT)x[3]*x[3]); } |
|
}; |
|
|
|
template<> inline double SqrC1<uchar, double>::operator()(uchar x) const |
|
{ return CV_SQR_8U(x); } |
|
|
|
template<> inline Vec<double, 2> SqrC2<uchar, double>::operator()(const Vec<uchar, 2>& x) const |
|
{ return Vec<double, 2>(CV_SQR_8U(x[0]), CV_SQR_8U(x[1])); } |
|
|
|
template<> inline Vec<double, 3> SqrC3<uchar, double>::operator() (const Vec<uchar, 3>& x) const |
|
{ return Vec<double, 3>(CV_SQR_8U(x[0]), CV_SQR_8U(x[1]), CV_SQR_8U(x[2])); } |
|
|
|
template<> inline Vec<double, 4> SqrC4<uchar, double>::operator() (const Vec<uchar, 4>& x) const |
|
{ return Vec<double, 4>(CV_SQR_8U(x[0]), CV_SQR_8U(x[1]), CV_SQR_8U(x[2]), CV_SQR_8U(x[3])); } |
|
|
|
|
|
template<class SqrOp> static void |
|
meanStdDev_( const Mat& srcmat, Scalar& _mean, Scalar& _stddev ) |
|
{ |
|
SqrOp sqr; |
|
typedef typename SqrOp::type1 T; |
|
typedef typename SqrOp::rtype ST; |
|
typedef typename DataType<ST>::channel_type ST1; |
|
|
|
assert( DataType<T>::type == srcmat.type() ); |
|
Size size = getContinuousSize( srcmat ); |
|
ST s = 0, sq = 0; |
|
|
|
for( int y = 0; y < size.height; y++ ) |
|
{ |
|
const T* src = (const T*)(srcmat.data + srcmat.step*y); |
|
for( int x = 0; x < size.width; x++ ) |
|
{ |
|
T v = src[x]; |
|
s += v; |
|
sq += sqr(v); |
|
} |
|
} |
|
|
|
_mean = _stddev = Scalar(); |
|
double scale = 1./std::max(size.width*size.height, 1); |
|
for( int i = 0; i < DataType<ST>::channels; i++ ) |
|
{ |
|
double t = ((ST1*)&s)[i]*scale; |
|
_mean.val[i] = t; |
|
_stddev.val[i] = std::sqrt(std::max(((ST1*)&sq)[i]*scale - t*t, 0.)); |
|
} |
|
} |
|
|
|
template<class SqrOp> static void |
|
meanStdDevMask_( const Mat& srcmat, const Mat& maskmat, |
|
Scalar& _mean, Scalar& _stddev ) |
|
{ |
|
SqrOp sqr; |
|
typedef typename SqrOp::type1 T; |
|
typedef typename SqrOp::rtype ST; |
|
typedef typename DataType<ST>::channel_type ST1; |
|
|
|
assert( DataType<T>::type == srcmat.type() && |
|
CV_8U == maskmat.type() && |
|
srcmat.size() == maskmat.size() ); |
|
Size size = getContinuousSize( srcmat, maskmat ); |
|
ST s = 0, sq = 0; |
|
int pix = 0; |
|
|
|
for( int y = 0; y < size.height; y++ ) |
|
{ |
|
const T* src = (const T*)(srcmat.data + srcmat.step*y); |
|
const uchar* mask = maskmat.data + maskmat.step*y; |
|
for( int x = 0; x < size.width; x++ ) |
|
if( mask[x] ) |
|
{ |
|
T v = src[x]; |
|
s += v; |
|
sq += sqr(v); |
|
pix++; |
|
} |
|
} |
|
_mean = _stddev = Scalar(); |
|
double scale = 1./std::max(pix, 1); |
|
for( int i = 0; i < DataType<ST>::channels; i++ ) |
|
{ |
|
double t = ((ST1*)&s)[i]*scale; |
|
_mean.val[i] = t; |
|
_stddev.val[i] = std::sqrt(std::max(((ST1*)&sq)[i]*scale - t*t, 0.)); |
|
} |
|
} |
|
|
|
typedef void (*MeanStdDevFunc)(const Mat& src, Scalar& mean, Scalar& stddev); |
|
|
|
typedef void (*MeanStdDevMaskFunc)(const Mat& src, const Mat& mask, |
|
Scalar& mean, Scalar& stddev); |
|
|
|
void meanStdDev( const Mat& m, Scalar& mean, Scalar& stddev, const Mat& mask ) |
|
{ |
|
static MeanStdDevFunc tab[]= |
|
{ |
|
meanStdDev_<SqrC1<uchar, double> >, 0, |
|
meanStdDev_<SqrC1<ushort, double> >, |
|
meanStdDev_<SqrC1<short, double> >, |
|
meanStdDev_<SqrC1<int, double> >, |
|
meanStdDev_<SqrC1<float, double> >, |
|
meanStdDev_<SqrC1<double, double> >, 0, |
|
|
|
meanStdDev_<SqrC2<uchar, double> >, 0, |
|
meanStdDev_<SqrC2<ushort, double> >, |
|
meanStdDev_<SqrC2<short, double> >, |
|
meanStdDev_<SqrC2<int, double> >, |
|
meanStdDev_<SqrC2<float, double> >, |
|
meanStdDev_<SqrC2<double, double> >, 0, |
|
|
|
meanStdDev_<SqrC3<uchar, double> >, 0, |
|
meanStdDev_<SqrC3<ushort, double> >, |
|
meanStdDev_<SqrC3<short, double> >, |
|
meanStdDev_<SqrC3<int, double> >, |
|
meanStdDev_<SqrC3<float, double> >, |
|
meanStdDev_<SqrC3<double, double> >, 0, |
|
|
|
meanStdDev_<SqrC4<uchar, double> >, 0, |
|
meanStdDev_<SqrC4<ushort, double> >, |
|
meanStdDev_<SqrC4<short, double> >, |
|
meanStdDev_<SqrC4<int, double> >, |
|
meanStdDev_<SqrC4<float, double> >, |
|
meanStdDev_<SqrC4<double, double> >, 0 |
|
}; |
|
|
|
static MeanStdDevMaskFunc mtab[]= |
|
{ |
|
meanStdDevMask_<SqrC1<uchar, double> >, 0, |
|
meanStdDevMask_<SqrC1<ushort, double> >, |
|
meanStdDevMask_<SqrC1<short, double> >, |
|
meanStdDevMask_<SqrC1<int, double> >, |
|
meanStdDevMask_<SqrC1<float, double> >, |
|
meanStdDevMask_<SqrC1<double, double> >, 0, |
|
|
|
meanStdDevMask_<SqrC2<uchar, double> >, 0, |
|
meanStdDevMask_<SqrC2<ushort, double> >, |
|
meanStdDevMask_<SqrC2<short, double> >, |
|
meanStdDevMask_<SqrC2<int, double> >, |
|
meanStdDevMask_<SqrC2<float, double> >, |
|
meanStdDevMask_<SqrC2<double, double> >, 0, |
|
|
|
meanStdDevMask_<SqrC3<uchar, double> >, 0, |
|
meanStdDevMask_<SqrC3<ushort, double> >, |
|
meanStdDevMask_<SqrC3<short, double> >, |
|
meanStdDevMask_<SqrC3<int, double> >, |
|
meanStdDevMask_<SqrC3<float, double> >, |
|
meanStdDevMask_<SqrC3<double, double> >, 0, |
|
|
|
meanStdDevMask_<SqrC4<uchar, double> >, 0, |
|
meanStdDevMask_<SqrC4<ushort, double> >, |
|
meanStdDevMask_<SqrC4<short, double> >, |
|
meanStdDevMask_<SqrC4<int, double> >, |
|
meanStdDevMask_<SqrC4<float, double> >, |
|
meanStdDevMask_<SqrC4<double, double> >, 0 |
|
}; |
|
|
|
CV_Assert( m.channels() <= 4 ); |
|
|
|
if( !mask.data ) |
|
{ |
|
MeanStdDevFunc func = tab[m.type()]; |
|
CV_Assert( func != 0 ); |
|
func( m, mean, stddev ); |
|
} |
|
else |
|
{ |
|
MeanStdDevMaskFunc func = mtab[m.type()]; |
|
CV_Assert( mask.size() == m.size() && mask.type() == CV_8U && func != 0 ); |
|
func( m, mask, mean, stddev ); |
|
} |
|
} |
|
|
|
|
|
/****************************************************************************************\ |
|
* minMaxLoc * |
|
\****************************************************************************************/ |
|
|
|
template<typename T> static void |
|
minMaxIndx_( const Mat& srcmat, double* minVal, double* maxVal, int* minLoc, int* maxLoc ) |
|
{ |
|
assert( DataType<T>::type == srcmat.type() ); |
|
const T* src = (const T*)srcmat.data; |
|
size_t step = srcmat.step/sizeof(src[0]); |
|
T min_val = src[0], max_val = min_val; |
|
int min_loc = 0, max_loc = 0; |
|
int x, loc = 0; |
|
Size size = getContinuousSize( srcmat ); |
|
|
|
for( ; size.height--; src += step, loc += size.width ) |
|
{ |
|
for( x = 0; x < size.width; x++ ) |
|
{ |
|
T val = src[x]; |
|
if( val < min_val ) |
|
{ |
|
min_val = val; |
|
min_loc = loc + x; |
|
} |
|
else if( val > max_val ) |
|
{ |
|
max_val = val; |
|
max_loc = loc + x; |
|
} |
|
} |
|
} |
|
|
|
*minLoc = min_loc; |
|
*maxLoc = max_loc; |
|
*minVal = min_val; |
|
*maxVal = max_val; |
|
} |
|
|
|
|
|
template<typename T> static void |
|
minMaxIndxMask_( const Mat& srcmat, const Mat& maskmat, |
|
double* minVal, double* maxVal, int* minLoc, int* maxLoc ) |
|
{ |
|
assert( DataType<T>::type == srcmat.type() && |
|
CV_8U == maskmat.type() && |
|
srcmat.size() == maskmat.size() ); |
|
const T* src = (const T*)srcmat.data; |
|
const uchar* mask = maskmat.data; |
|
size_t step = srcmat.step/sizeof(src[0]); |
|
size_t maskstep = maskmat.step; |
|
T min_val = 0, max_val = 0; |
|
int min_loc = -1, max_loc = -1; |
|
int x = 0, y, loc = 0; |
|
Size size = getContinuousSize( srcmat, maskmat ); |
|
|
|
for( y = 0; y < size.height; y++, src += step, mask += maskstep, loc += size.width ) |
|
{ |
|
for( x = 0; x < size.width; x++ ) |
|
if( mask[x] != 0 ) |
|
{ |
|
min_loc = max_loc = loc + x; |
|
min_val = max_val = src[x]; |
|
break; |
|
} |
|
if( x < size.width ) |
|
break; |
|
} |
|
|
|
for( ; y < size.height; x = 0, y++, src += step, mask += maskstep, loc += size.width ) |
|
{ |
|
for( ; x < size.width; x++ ) |
|
{ |
|
T val = src[x]; |
|
int m = mask[x]; |
|
|
|
if( val < min_val && m ) |
|
{ |
|
min_val = val; |
|
min_loc = loc + x; |
|
} |
|
else if( val > max_val && m ) |
|
{ |
|
max_val = val; |
|
max_loc = loc + x; |
|
} |
|
} |
|
} |
|
|
|
*minLoc = min_loc; |
|
*maxLoc = max_loc; |
|
*minVal = min_val; |
|
*maxVal = max_val; |
|
} |
|
|
|
typedef void (*MinMaxIndxFunc)(const Mat&, double*, double*, int*, int*); |
|
|
|
typedef void (*MinMaxIndxMaskFunc)(const Mat&, const Mat&, |
|
double*, double*, int*, int*); |
|
|
|
void minMaxLoc( const Mat& img, double* minVal, double* maxVal, |
|
Point* minLoc, Point* maxLoc, const Mat& mask ) |
|
{ |
|
static MinMaxIndxFunc tab[] = |
|
{minMaxIndx_<uchar>, 0, minMaxIndx_<ushort>, minMaxIndx_<short>, |
|
minMaxIndx_<int>, minMaxIndx_<float>, minMaxIndx_<double>, 0}; |
|
static MinMaxIndxMaskFunc tabm[] = |
|
{minMaxIndxMask_<uchar>, 0, minMaxIndxMask_<ushort>, minMaxIndxMask_<short>, |
|
minMaxIndxMask_<int>, minMaxIndxMask_<float>, minMaxIndxMask_<double>, 0}; |
|
|
|
int depth = img.depth(); |
|
double minval=0, maxval=0; |
|
int minloc=0, maxloc=0; |
|
|
|
CV_Assert( img.channels() == 1 ); |
|
|
|
if( !mask.data ) |
|
{ |
|
MinMaxIndxFunc func = tab[depth]; |
|
CV_Assert( func != 0 ); |
|
func( img, &minval, &maxval, &minloc, &maxloc ); |
|
} |
|
else |
|
{ |
|
CV_Assert( img.size() == mask.size() && mask.type() == CV_8U ); |
|
MinMaxIndxMaskFunc func = tabm[depth]; |
|
CV_Assert( func != 0 ); |
|
func( img, mask, &minval, &maxval, &minloc, &maxloc ); |
|
} |
|
|
|
if( minVal ) |
|
*minVal = minval; |
|
if( maxVal ) |
|
*maxVal = maxval; |
|
if( minLoc ) |
|
{ |
|
if( minloc >= 0 ) |
|
{ |
|
minLoc->y = minloc/img.cols; |
|
minLoc->x = minloc - minLoc->y*img.cols; |
|
} |
|
else |
|
minLoc->x = minLoc->y = -1; |
|
} |
|
if( maxLoc ) |
|
{ |
|
if( maxloc >= 0 ) |
|
{ |
|
maxLoc->y = maxloc/img.cols; |
|
maxLoc->x = maxloc - maxLoc->y*img.cols; |
|
} |
|
else |
|
maxLoc->x = maxLoc->y = -1; |
|
} |
|
} |
|
|
|
/****************************************************************************************\ |
|
* norm * |
|
\****************************************************************************************/ |
|
|
|
template<typename T, typename WT=T> struct OpAbs |
|
{ |
|
typedef T type1; |
|
typedef WT rtype; |
|
rtype operator()(type1 x) const { return (WT)std::abs(x); } |
|
}; |
|
|
|
template<> inline uchar OpAbs<uchar, uchar>::operator()(uchar x) const { return x; } |
|
template<> inline ushort OpAbs<ushort, ushort>::operator()(ushort x) const { return x; } |
|
|
|
template<class ElemFunc, class UpdateFunc, class GlobUpdateFunc, int BLOCK_SIZE> |
|
static double normBlock_( const Mat& srcmat ) |
|
{ |
|
ElemFunc f; |
|
UpdateFunc update; |
|
GlobUpdateFunc globUpdate; |
|
typedef typename ElemFunc::type1 T; |
|
typedef typename UpdateFunc::rtype WT; |
|
typedef typename GlobUpdateFunc::rtype ST; |
|
|
|
assert( DataType<T>::depth == srcmat.depth() ); |
|
Size size = getContinuousSize( srcmat, srcmat.channels() ); |
|
ST s0 = 0; // luckily, 0 is the correct starting value for both + and max update operations |
|
WT s = 0; |
|
int y, remaining = BLOCK_SIZE; |
|
|
|
for( y = 0; y < size.height; y++ ) |
|
{ |
|
const T* src = (const T*)(srcmat.data + srcmat.step*y); |
|
int x = 0; |
|
while( x < size.width ) |
|
{ |
|
int limit = std::min( remaining, size.width - x ); |
|
remaining -= limit; |
|
limit += x; |
|
for( ; x <= limit - 4; x += 4 ) |
|
{ |
|
s = update(s, (WT)f(src[x])); |
|
s = update(s, (WT)f(src[x+1])); |
|
s = update(s, (WT)f(src[x+2])); |
|
s = update(s, (WT)f(src[x+3])); |
|
} |
|
for( ; x < limit; x++ ) |
|
s = update(s, (WT)f(src[x])); |
|
if( remaining == 0 || (x == size.width && y == size.height-1) ) |
|
{ |
|
s0 = globUpdate(s0, (ST)s); |
|
s = 0; |
|
remaining = BLOCK_SIZE; |
|
} |
|
} |
|
} |
|
return s0; |
|
} |
|
|
|
template<class ElemFunc, class UpdateFunc> |
|
static double norm_( const Mat& srcmat ) |
|
{ |
|
ElemFunc f; |
|
UpdateFunc update; |
|
typedef typename ElemFunc::type1 T; |
|
typedef typename UpdateFunc::rtype ST; |
|
|
|
assert( DataType<T>::depth == srcmat.depth() ); |
|
Size size = getContinuousSize( srcmat, srcmat.channels() ); |
|
ST s = 0; |
|
|
|
for( int y = 0; y < size.height; y++ ) |
|
{ |
|
const T* src = (const T*)(srcmat.data + srcmat.step*y); |
|
int x = 0; |
|
for( ; x <= size.width - 4; x += 4 ) |
|
{ |
|
s = update(s, (ST)f(src[x])); |
|
s = update(s, (ST)f(src[x+1])); |
|
s = update(s, (ST)f(src[x+2])); |
|
s = update(s, (ST)f(src[x+3])); |
|
} |
|
for( ; x < size.width; x++ ) |
|
s = update(s, (ST)f(src[x])); |
|
} |
|
return s; |
|
} |
|
|
|
template<class ElemFunc, class UpdateFunc, class GlobUpdateFunc, int BLOCK_SIZE> |
|
static double normMaskBlock_( const Mat& srcmat, const Mat& maskmat ) |
|
{ |
|
ElemFunc f; |
|
UpdateFunc update; |
|
GlobUpdateFunc globUpdate; |
|
typedef typename ElemFunc::type1 T; |
|
typedef typename UpdateFunc::rtype WT; |
|
typedef typename GlobUpdateFunc::rtype ST; |
|
|
|
assert( DataType<T>::depth == srcmat.depth() ); |
|
Size size = getContinuousSize( srcmat, maskmat ); |
|
ST s0 = 0; |
|
WT s = 0; |
|
int y, remaining = BLOCK_SIZE; |
|
|
|
for( y = 0; y < size.height; y++ ) |
|
{ |
|
const T* src = (const T*)(srcmat.data + srcmat.step*y); |
|
const uchar* mask = maskmat.data + maskmat.step*y; |
|
int x = 0; |
|
while( x < size.width ) |
|
{ |
|
int limit = std::min( remaining, size.width - x ); |
|
remaining -= limit; |
|
limit += x; |
|
for( ; x <= limit - 4; x += 4 ) |
|
{ |
|
if( mask[x] ) |
|
s = update(s, (WT)f(src[x])); |
|
if( mask[x+1] ) |
|
s = update(s, (WT)f(src[x+1])); |
|
if( mask[x+2] ) |
|
s = update(s, (WT)f(src[x+2])); |
|
if( mask[x+3] ) |
|
s = update(s, (WT)f(src[x+3])); |
|
} |
|
for( ; x < limit; x++ ) |
|
{ |
|
if( mask[x] ) |
|
s = update(s, (WT)f(src[x])); |
|
} |
|
if( remaining == 0 || (x == size.width && y == size.height-1) ) |
|
{ |
|
s0 = globUpdate(s0, (ST)s); |
|
s = 0; |
|
remaining = BLOCK_SIZE; |
|
} |
|
} |
|
} |
|
return s0; |
|
} |
|
|
|
template<class ElemFunc, class UpdateFunc> |
|
static double normMask_( const Mat& srcmat, const Mat& maskmat ) |
|
{ |
|
ElemFunc f; |
|
UpdateFunc update; |
|
typedef typename ElemFunc::type1 T; |
|
typedef typename UpdateFunc::rtype ST; |
|
|
|
assert( DataType<T>::depth == srcmat.depth() ); |
|
Size size = getContinuousSize( srcmat, maskmat ); |
|
ST s = 0; |
|
|
|
for( int y = 0; y < size.height; y++ ) |
|
{ |
|
const T* src = (const T*)(srcmat.data + srcmat.step*y); |
|
const uchar* mask = maskmat.data + maskmat.step*y; |
|
int x = 0; |
|
for( ; x <= size.width - 4; x += 4 ) |
|
{ |
|
if( mask[x] ) |
|
s = update(s, (ST)f(src[x])); |
|
if( mask[x+1] ) |
|
s = update(s, (ST)f(src[x+1])); |
|
if( mask[x+2] ) |
|
s = update(s, (ST)f(src[x+2])); |
|
if( mask[x+3] ) |
|
s = update(s, (ST)f(src[x+3])); |
|
} |
|
for( ; x < size.width; x++ ) |
|
{ |
|
if( mask[x] ) |
|
s = update(s, (ST)f(src[x])); |
|
} |
|
} |
|
return s; |
|
} |
|
|
|
template<typename T, class ElemFunc, class UpdateFunc, class GlobUpdateFunc, int BLOCK_SIZE> |
|
static double normDiffBlock_( const Mat& srcmat1, const Mat& srcmat2 ) |
|
{ |
|
ElemFunc f; |
|
UpdateFunc update; |
|
GlobUpdateFunc globUpdate; |
|
typedef typename UpdateFunc::rtype WT; |
|
typedef typename GlobUpdateFunc::rtype ST; |
|
|
|
assert( DataType<T>::depth == srcmat1.depth() ); |
|
Size size = getContinuousSize( srcmat1, srcmat2, srcmat1.channels() ); |
|
ST s0 = 0; |
|
WT s = 0; |
|
int y, remaining = BLOCK_SIZE; |
|
|
|
for( y = 0; y < size.height; y++ ) |
|
{ |
|
const T* src1 = (const T*)(srcmat1.data + srcmat1.step*y); |
|
const T* src2 = (const T*)(srcmat2.data + srcmat2.step*y); |
|
int x = 0; |
|
while( x < size.width ) |
|
{ |
|
int limit = std::min( remaining, size.width - x ); |
|
remaining -= limit; |
|
limit += x; |
|
for( ; x <= limit - 4; x += 4 ) |
|
{ |
|
s = update(s, (WT)f(src1[x] - src2[x])); |
|
s = update(s, (WT)f(src1[x+1] - src2[x+1])); |
|
s = update(s, (WT)f(src1[x+2] - src2[x+2])); |
|
s = update(s, (WT)f(src1[x+3] - src2[x+3])); |
|
} |
|
for( ; x < limit; x++ ) |
|
s = update(s, (WT)f(src1[x] - src2[x])); |
|
if( remaining == 0 || (x == size.width && y == size.height-1) ) |
|
{ |
|
s0 = globUpdate(s0, (ST)s); |
|
s = 0; |
|
remaining = BLOCK_SIZE; |
|
} |
|
} |
|
} |
|
return s0; |
|
} |
|
|
|
template<typename T, class ElemFunc, class UpdateFunc> |
|
static double normDiff_( const Mat& srcmat1, const Mat& srcmat2 ) |
|
{ |
|
ElemFunc f; |
|
UpdateFunc update; |
|
typedef typename UpdateFunc::rtype ST; |
|
|
|
assert( DataType<T>::depth == srcmat1.depth() ); |
|
Size size = getContinuousSize( srcmat1, srcmat2, srcmat1.channels() ); |
|
ST s = 0; |
|
|
|
for( int y = 0; y < size.height; y++ ) |
|
{ |
|
const T* src1 = (const T*)(srcmat1.data + srcmat1.step*y); |
|
const T* src2 = (const T*)(srcmat2.data + srcmat2.step*y); |
|
int x = 0; |
|
for( ; x <= size.width - 4; x += 4 ) |
|
{ |
|
s = update(s, (ST)f(src1[x] - src2[x])); |
|
s = update(s, (ST)f(src1[x+1] - src2[x+1])); |
|
s = update(s, (ST)f(src1[x+2] - src2[x+2])); |
|
s = update(s, (ST)f(src1[x+3] - src2[x+3])); |
|
} |
|
for( ; x < size.width; x++ ) |
|
s = update(s, (ST)f(src1[x] - src2[x])); |
|
} |
|
return s; |
|
} |
|
|
|
template<typename T, class ElemFunc, class UpdateFunc, class GlobUpdateFunc, int BLOCK_SIZE> |
|
static double normDiffMaskBlock_( const Mat& srcmat1, const Mat& srcmat2, const Mat& maskmat ) |
|
{ |
|
ElemFunc f; |
|
UpdateFunc update; |
|
GlobUpdateFunc globUpdate; |
|
typedef typename UpdateFunc::rtype WT; |
|
typedef typename GlobUpdateFunc::rtype ST; |
|
|
|
assert( DataType<T>::depth == srcmat1.depth() ); |
|
Size size = getContinuousSize( srcmat1, srcmat2, maskmat ); |
|
ST s0 = 0; |
|
WT s = 0; |
|
int y, remaining = BLOCK_SIZE; |
|
|
|
for( y = 0; y < size.height; y++ ) |
|
{ |
|
const T* src1 = (const T*)(srcmat1.data + srcmat1.step*y); |
|
const T* src2 = (const T*)(srcmat2.data + srcmat2.step*y); |
|
const uchar* mask = maskmat.data + maskmat.step*y; |
|
int x = 0; |
|
while( x < size.width ) |
|
{ |
|
int limit = std::min( remaining, size.width - x ); |
|
remaining -= limit; |
|
limit += x; |
|
for( ; x <= limit - 4; x += 4 ) |
|
{ |
|
if( mask[x] ) |
|
s = update(s, (WT)f(src1[x] - src2[x])); |
|
if( mask[x+1] ) |
|
s = update(s, (WT)f(src1[x+1] - src2[x+1])); |
|
if( mask[x+2] ) |
|
s = update(s, (WT)f(src1[x+2] - src2[x+2])); |
|
if( mask[x+3] ) |
|
s = update(s, (WT)f(src1[x+3] - src2[x+3])); |
|
} |
|
for( ; x < limit; x++ ) |
|
if( mask[x] ) |
|
s = update(s, (WT)f(src1[x] - src2[x])); |
|
if( remaining == 0 || (x == size.width && y == size.height-1) ) |
|
{ |
|
s0 = globUpdate(s0, (ST)s); |
|
s = 0; |
|
remaining = BLOCK_SIZE; |
|
} |
|
} |
|
} |
|
return s0; |
|
} |
|
|
|
template<typename T, class ElemFunc, class UpdateFunc> |
|
static double normDiffMask_( const Mat& srcmat1, const Mat& srcmat2, const Mat& maskmat ) |
|
{ |
|
ElemFunc f; |
|
UpdateFunc update; |
|
typedef typename UpdateFunc::rtype ST; |
|
|
|
assert( DataType<T>::depth == srcmat1.depth() ); |
|
Size size = getContinuousSize( srcmat1, srcmat2, maskmat ); |
|
ST s = 0; |
|
|
|
for( int y = 0; y < size.height; y++ ) |
|
{ |
|
const T* src1 = (const T*)(srcmat1.data + srcmat1.step*y); |
|
const T* src2 = (const T*)(srcmat2.data + srcmat2.step*y); |
|
const uchar* mask = maskmat.data + maskmat.step*y; |
|
int x = 0; |
|
for( ; x <= size.width - 4; x += 4 ) |
|
{ |
|
if( mask[x] ) |
|
s = update(s, (ST)f(src1[x] - src2[x])); |
|
if( mask[x+1] ) |
|
s = update(s, (ST)f(src1[x+1] - src2[x+1])); |
|
if( mask[x+2] ) |
|
s = update(s, (ST)f(src1[x+2] - src2[x+2])); |
|
if( mask[x+3] ) |
|
s = update(s, (ST)f(src1[x+3] - src2[x+3])); |
|
} |
|
for( ; x < size.width; x++ ) |
|
if( mask[x] ) |
|
s = update(s, (ST)f(src1[x] - src2[x])); |
|
|
|
} |
|
return s; |
|
} |
|
|
|
typedef double (*NormFunc)(const Mat& src); |
|
typedef double (*NormDiffFunc)(const Mat& src1, const Mat& src2); |
|
typedef double (*NormMaskFunc)(const Mat& src1, const Mat& mask); |
|
typedef double (*NormDiffMaskFunc)(const Mat& src1, const Mat& src2, const Mat& mask); |
|
|
|
double norm( const Mat& a, int normType ) |
|
{ |
|
static NormFunc tab[3][8] = |
|
{ |
|
{ |
|
norm_<OpAbs<uchar>, OpMax<int> >, |
|
norm_<OpAbs<schar>, OpMax<int> >, |
|
norm_<OpAbs<ushort>, OpMax<int> >, |
|
norm_<OpAbs<short, int>, OpMax<int> >, |
|
norm_<OpAbs<int>, OpMax<int> >, |
|
norm_<OpAbs<float>, OpMax<float> >, |
|
norm_<OpAbs<double>, OpMax<double> > |
|
}, |
|
|
|
{ |
|
normBlock_<OpAbs<uchar>, OpAdd<unsigned>, OpAdd<double>, 1<<24>, |
|
normBlock_<OpAbs<schar>, OpAdd<unsigned>, OpAdd<double>, 1<<24>, |
|
normBlock_<OpAbs<ushort>, OpAdd<unsigned>, OpAdd<double>, 1<<16>, |
|
normBlock_<OpAbs<short, int>, OpAdd<unsigned>, OpAdd<double>, 1<<16>, |
|
norm_<OpAbs<int>, OpAdd<double> >, |
|
norm_<OpAbs<float>, OpAdd<double> >, |
|
norm_<OpAbs<double>, OpAdd<double> > |
|
}, |
|
|
|
{ |
|
normBlock_<SqrC1<uchar, unsigned>, OpAdd<unsigned>, OpAdd<double>, 1<<16>, |
|
normBlock_<SqrC1<schar, unsigned>, OpAdd<unsigned>, OpAdd<double>, 1<<16>, |
|
norm_<SqrC1<ushort, double>, OpAdd<double> >, |
|
norm_<SqrC1<short, double>, OpAdd<double> >, |
|
norm_<SqrC1<int, double>, OpAdd<double> >, |
|
norm_<SqrC1<float, double>, OpAdd<double> >, |
|
norm_<SqrC1<double, double>, OpAdd<double> > |
|
} |
|
}; |
|
|
|
normType &= 7; |
|
CV_Assert(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2); |
|
NormFunc func = tab[normType >> 1][a.depth()]; |
|
CV_Assert(func != 0); |
|
double r = func(a); |
|
return normType == NORM_L2 ? std::sqrt(r) : r; |
|
} |
|
|
|
|
|
double norm( const Mat& a, int normType, const Mat& mask ) |
|
{ |
|
static NormMaskFunc tab[3][8] = |
|
{ |
|
{ |
|
normMask_<OpAbs<uchar>, OpMax<int> >, |
|
normMask_<OpAbs<schar>, OpMax<int> >, |
|
normMask_<OpAbs<ushort>, OpMax<int> >, |
|
normMask_<OpAbs<short, int>, OpMax<int> >, |
|
normMask_<OpAbs<int>, OpMax<int> >, |
|
normMask_<OpAbs<float>, OpMax<float> >, |
|
normMask_<OpAbs<double>, OpMax<double> > |
|
}, |
|
|
|
{ |
|
normMaskBlock_<OpAbs<uchar>, OpAdd<unsigned>, OpAdd<double>, 1<<24>, |
|
normMaskBlock_<OpAbs<schar>, OpAdd<unsigned>, OpAdd<double>, 1<<24>, |
|
normMaskBlock_<OpAbs<ushort>, OpAdd<unsigned>, OpAdd<double>, 1<<16>, |
|
normMaskBlock_<OpAbs<short, int>, OpAdd<unsigned>, OpAdd<double>, 1<<16>, |
|
normMask_<OpAbs<int>, OpAdd<double> >, |
|
normMask_<OpAbs<float>, OpAdd<double> >, |
|
normMask_<OpAbs<double>, OpAdd<double> > |
|
}, |
|
|
|
{ |
|
normMaskBlock_<SqrC1<uchar, unsigned>, OpAdd<unsigned>, OpAdd<double>, 1<<16>, |
|
normMaskBlock_<SqrC1<schar, unsigned>, OpAdd<unsigned>, OpAdd<double>, 1<<16>, |
|
normMask_<SqrC1<ushort, double>, OpAdd<double> >, |
|
normMask_<SqrC1<short, double>, OpAdd<double> >, |
|
normMask_<SqrC1<int, double>, OpAdd<double> >, |
|
normMask_<SqrC1<float, double>, OpAdd<double> >, |
|
normMask_<SqrC1<double, double>, OpAdd<double> > |
|
} |
|
}; |
|
|
|
if( !mask.data ) |
|
return norm(a, normType); |
|
|
|
normType &= 7; |
|
CV_Assert((normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2) && |
|
a.size() == mask.size() && mask.type() == CV_8U && a.channels() == 1); |
|
NormMaskFunc func = tab[normType >> 1][a.depth()]; |
|
CV_Assert(func != 0); |
|
double r = func(a, mask); |
|
return normType == NORM_L2 ? std::sqrt(r) : r; |
|
} |
|
|
|
|
|
double norm( const Mat& a, const Mat& b, int normType ) |
|
{ |
|
static NormDiffFunc tab[3][8] = |
|
{ |
|
{ |
|
normDiff_<uchar, OpAbs<int>, OpMax<int> >, |
|
normDiff_<schar, OpAbs<int>, OpMax<int> >, |
|
normDiff_<ushort, OpAbs<int>, OpMax<int> >, |
|
normDiff_<short, OpAbs<int>, OpMax<int> >, |
|
normDiff_<int, OpAbs<int>, OpMax<int> >, |
|
normDiff_<float, OpAbs<float>, OpMax<float> >, |
|
normDiff_<double, OpAbs<double>, OpMax<double> > |
|
}, |
|
|
|
{ |
|
normDiffBlock_<uchar, OpAbs<int>, OpAdd<unsigned>, OpAdd<double>, 1<<24>, |
|
normDiffBlock_<schar, OpAbs<int>, OpAdd<unsigned>, OpAdd<double>, 1<<24>, |
|
normDiffBlock_<ushort, OpAbs<int>, OpAdd<unsigned>, OpAdd<double>, 1<<16>, |
|
normDiffBlock_<short, OpAbs<int>, OpAdd<unsigned>, OpAdd<double>, 1<<16>, |
|
normDiff_<int, OpAbs<int>, OpAdd<double> >, |
|
normDiff_<float, OpAbs<float>, OpAdd<double> >, |
|
normDiff_<double, OpAbs<double>, OpAdd<double> > |
|
}, |
|
|
|
{ |
|
normDiffBlock_<uchar, SqrC1<int, int>, OpAdd<unsigned>, OpAdd<double>, 1<<16>, |
|
normDiffBlock_<schar, SqrC1<int, int>, OpAdd<unsigned>, OpAdd<double>, 1<<16>, |
|
normDiff_<ushort, SqrC1<int, double>, OpAdd<double> >, |
|
normDiff_<short, SqrC1<int, double>, OpAdd<double> >, |
|
normDiff_<int, SqrC1<int, double>, OpAdd<double> >, |
|
normDiff_<float, SqrC1<float, double>, OpAdd<double> >, |
|
normDiff_<double, SqrC1<double, double>, OpAdd<double> > |
|
} |
|
}; |
|
|
|
CV_Assert( a.type() == b.type() && a.size() == b.size() ); |
|
|
|
bool isRelative = (normType & NORM_RELATIVE) != 0; |
|
normType &= 7; |
|
CV_Assert(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2); |
|
|
|
NormDiffFunc func = tab[normType >> 1][a.depth()]; |
|
CV_Assert(func != 0); |
|
double r = func( a, b ); |
|
if( normType == NORM_L2 ) |
|
r = std::sqrt(r); |
|
if( isRelative ) |
|
r /= norm(b, normType); |
|
return r; |
|
} |
|
|
|
double norm( const Mat& a, const Mat& b, int normType, const Mat& mask ) |
|
{ |
|
static NormDiffMaskFunc tab[3][8] = |
|
{ |
|
{ |
|
normDiffMask_<uchar, OpAbs<int>, OpMax<int> >, |
|
normDiffMask_<schar, OpAbs<int>, OpMax<int> >, |
|
normDiffMask_<ushort, OpAbs<int>, OpMax<int> >, |
|
normDiffMask_<short, OpAbs<int>, OpMax<int> >, |
|
normDiffMask_<int, OpAbs<int>, OpMax<int> >, |
|
normDiffMask_<float, OpAbs<float>, OpMax<float> >, |
|
normDiffMask_<double, OpAbs<double>, OpMax<double> > |
|
}, |
|
|
|
{ |
|
normDiffMaskBlock_<uchar, OpAbs<int>, OpAdd<unsigned>, OpAdd<double>, 1<<24>, |
|
normDiffMaskBlock_<schar, OpAbs<int>, OpAdd<unsigned>, OpAdd<double>, 1<<24>, |
|
normDiffMaskBlock_<ushort, OpAbs<int>, OpAdd<unsigned>, OpAdd<double>, 1<<16>, |
|
normDiffMaskBlock_<short, OpAbs<int>, OpAdd<unsigned>, OpAdd<double>, 1<<16>, |
|
normDiffMask_<int, OpAbs<int>, OpAdd<double> >, |
|
normDiffMask_<float, OpAbs<float>, OpAdd<double> >, |
|
normDiffMask_<double, OpAbs<double>, OpAdd<double> > |
|
}, |
|
|
|
{ |
|
normDiffMaskBlock_<uchar, SqrC1<int, int>, OpAdd<unsigned>, OpAdd<double>, 1<<16>, |
|
normDiffMaskBlock_<schar, SqrC1<int, int>, OpAdd<unsigned>, OpAdd<double>, 1<<16>, |
|
normDiffMask_<ushort, SqrC1<int, double>, OpAdd<double> >, |
|
normDiffMask_<short, SqrC1<int, double>, OpAdd<double> >, |
|
normDiffMask_<int, SqrC1<int, double>, OpAdd<double> >, |
|
normDiffMask_<float, SqrC1<float, double>, OpAdd<double> >, |
|
normDiffMask_<double, SqrC1<double, double>, OpAdd<double> > |
|
} |
|
}; |
|
|
|
if( !mask.data ) |
|
return norm(a, b, normType); |
|
|
|
CV_Assert( a.type() == b.type() && a.size() == b.size() && |
|
a.size() == mask.size() && mask.type() == CV_8U && a.channels() == 1); |
|
|
|
bool isRelative = (normType & NORM_RELATIVE) != 0; |
|
normType &= 7; |
|
CV_Assert(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2); |
|
|
|
NormDiffMaskFunc func = tab[normType >> 1][a.depth()]; |
|
CV_Assert(func != 0); |
|
double r = func( a, b, mask ); |
|
if( normType == NORM_L2 ) |
|
r = std::sqrt(r); |
|
if( isRelative ) |
|
r /= std::max(norm(b, normType, mask), DBL_EPSILON); |
|
return r; |
|
} |
|
|
|
} |
|
|
|
|
|
CV_IMPL CvScalar cvSum( const CvArr* srcarr ) |
|
{ |
|
cv::Scalar sum = cv::sum(cv::cvarrToMat(srcarr, false, true, 1)); |
|
if( CV_IS_IMAGE(srcarr) ) |
|
{ |
|
int coi = cvGetImageCOI((IplImage*)srcarr); |
|
if( coi ) |
|
{ |
|
CV_Assert( 0 < coi && coi <= 4 ); |
|
sum = cv::Scalar(sum[coi-1]); |
|
} |
|
} |
|
return sum; |
|
} |
|
|
|
CV_IMPL int cvCountNonZero( const CvArr* imgarr ) |
|
{ |
|
cv::Mat img = cv::cvarrToMat(imgarr, false, true, 1); |
|
if( img.channels() > 1 ) |
|
cv::extractImageCOI(imgarr, img); |
|
return countNonZero(img); |
|
} |
|
|
|
|
|
CV_IMPL CvScalar |
|
cvAvg( const void* imgarr, const void* maskarr ) |
|
{ |
|
cv::Mat img = cv::cvarrToMat(imgarr, false, true, 1); |
|
cv::Scalar mean = !maskarr ? cv::mean(img) : cv::mean(img, cv::cvarrToMat(maskarr)); |
|
if( CV_IS_IMAGE(imgarr) ) |
|
{ |
|
int coi = cvGetImageCOI((IplImage*)imgarr); |
|
if( coi ) |
|
{ |
|
CV_Assert( 0 < coi && coi <= 4 ); |
|
mean = cv::Scalar(mean[coi-1]); |
|
} |
|
} |
|
return mean; |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvAvgSdv( const CvArr* imgarr, CvScalar* _mean, CvScalar* _sdv, const void* maskarr ) |
|
{ |
|
cv::Scalar mean, sdv; |
|
|
|
cv::Mat mask; |
|
if( maskarr ) |
|
mask = cv::cvarrToMat(maskarr); |
|
|
|
cv::meanStdDev(cv::cvarrToMat(imgarr, false, true, 1), mean, sdv, mask ); |
|
|
|
if( CV_IS_IMAGE(imgarr) ) |
|
{ |
|
int coi = cvGetImageCOI((IplImage*)imgarr); |
|
if( coi ) |
|
{ |
|
CV_Assert( 0 < coi && coi <= 4 ); |
|
mean = cv::Scalar(mean[coi-1]); |
|
sdv = cv::Scalar(sdv[coi-1]); |
|
} |
|
} |
|
|
|
if( _mean ) |
|
*(cv::Scalar*)_mean = mean; |
|
if( _sdv ) |
|
*(cv::Scalar*)_sdv = sdv; |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvMinMaxLoc( const void* imgarr, double* _minVal, double* _maxVal, |
|
CvPoint* _minLoc, CvPoint* _maxLoc, const void* maskarr ) |
|
{ |
|
cv::Mat mask, img = cv::cvarrToMat(imgarr, false, true, 1); |
|
if( maskarr ) |
|
mask = cv::cvarrToMat(maskarr); |
|
if( img.channels() > 1 ) |
|
cv::extractImageCOI(imgarr, img); |
|
|
|
cv::minMaxLoc( img, _minVal, _maxVal, |
|
(cv::Point*)_minLoc, (cv::Point*)_maxLoc, mask ); |
|
} |
|
|
|
|
|
CV_IMPL double |
|
cvNorm( const void* imgA, const void* imgB, int normType, const void* maskarr ) |
|
{ |
|
cv::Mat a, mask; |
|
if( !imgA ) |
|
{ |
|
imgA = imgB; |
|
imgB = 0; |
|
} |
|
|
|
a = cv::cvarrToMat(imgA, false, true, 1); |
|
if( maskarr ) |
|
mask = cv::cvarrToMat(maskarr); |
|
|
|
if( a.channels() > 1 && CV_IS_IMAGE(imgA) && cvGetImageCOI((const IplImage*)imgA) > 0 ) |
|
cv::extractImageCOI(imgA, a); |
|
|
|
if( !imgB ) |
|
return !maskarr ? cv::norm(a, normType) : cv::norm(a, normType, mask); |
|
|
|
cv::Mat b = cv::cvarrToMat(imgB, false, true, 1); |
|
if( b.channels() > 1 && CV_IS_IMAGE(imgB) && cvGetImageCOI((const IplImage*)imgB) > 0 ) |
|
cv::extractImageCOI(imgB, b); |
|
|
|
return !maskarr ? cv::norm(a, b, normType) : cv::norm(a, b, normType, mask); |
|
}
|
|
|