Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
329 lines
9.3 KiB
329 lines
9.3 KiB
#include "opencv2/ts.hpp" |
|
#include "precomp.hpp" |
|
#include <climits> |
|
#include <algorithm> |
|
#include <cstdarg> |
|
|
|
namespace cv{namespace optim{ |
|
using std::vector; |
|
|
|
const void dprintf(const char* format,...){ |
|
#ifdef ALEX_DEBUG |
|
va_list args; |
|
va_start (args,format); |
|
vprintf(format,args); |
|
va_end(args); |
|
#endif |
|
} |
|
|
|
void const print_matrix(const Mat& X){ |
|
#ifdef ALEX_DEBUG |
|
dprintf("\ttype:%d vs %d,\tsize: %d-on-%d\n",X.type(),CV_64FC1,X.rows,X.cols); |
|
for(int i=0;i<X.rows;i++){ |
|
dprintf("\t["); |
|
for(int j=0;j<X.cols;j++){ |
|
dprintf("%g, ",X.at<double>(i,j)); |
|
} |
|
dprintf("]\n"); |
|
} |
|
#endif |
|
} |
|
|
|
void const print_simplex_state(const Mat& c,const Mat&b,double v,const vector<int>& N,const vector<int>& B){ |
|
#ifdef ALEX_DEBUG |
|
dprintf("\tprint simplex state\n"); |
|
|
|
dprintf("v=%g\n",v); |
|
|
|
dprintf("here c goes\n"); |
|
print_matrix(c); |
|
|
|
dprintf("non-basic: "); |
|
for (std::vector<int>::const_iterator it = N.begin() ; it != N.end(); ++it){ |
|
dprintf("%d, ",*it); |
|
} |
|
dprintf("\n"); |
|
|
|
dprintf("here b goes\n"); |
|
print_matrix(b); |
|
dprintf("basic: "); |
|
|
|
for (std::vector<int>::const_iterator it = B.begin() ; it != B.end(); ++it){ |
|
dprintf("%d, ",*it); |
|
} |
|
dprintf("\n"); |
|
#endif |
|
} |
|
|
|
/**Due to technical considerations, the format of input b and c is somewhat special: |
|
*both b and c should be one column bigger than corresponding b and c of linear problem and the leftmost column will be used internally |
|
by this procedure - it should not be cleaned before the call to procedure and may contain mess after |
|
it also initializes N and B and does not make any assumptions about their init values |
|
* @return SOLVELP_UNFEASIBLE if problem is unfeasible, 0 if feasible. |
|
*/ |
|
const int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B); |
|
const inline void pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>& N,vector<int>& B, int leaving_index,int entering_index); |
|
/**@return SOLVELP_UNBOUNDED means the problem is unbdd, SOLVELP_MULTI means multiple solutions, SOLVELP_SINGLE means one solution. |
|
*/ |
|
const int inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B); |
|
const void swap_columns(Mat_<double>& A,int col1,int col2); |
|
|
|
//return codes:-2 (no_sol - unbdd),-1(no_sol - unfsbl), 0(single_sol), 1(multiple_sol=>least_l2_norm) |
|
int solveLP(const Mat& Func, const Mat& Constr, Mat& z){ |
|
dprintf("call to solveLP\n"); |
|
|
|
//sanity check (size, type, no. of channels) |
|
CV_Assert(Func.type()==CV_64FC1); |
|
CV_Assert(Constr.type()==CV_64FC1); |
|
CV_Assert(Func.rows==1); |
|
CV_Assert(Constr.cols-Func.cols==1); |
|
|
|
//copy arguments for we will shall modify them |
|
Mat_<double> bigC=Mat_<double>(1,Func.cols+1), |
|
bigB=Mat_<double>(Constr.rows,Constr.cols+1); |
|
Func.copyTo(bigC.colRange(1,bigC.cols)); |
|
Constr.copyTo(bigB.colRange(1,bigB.cols)); |
|
double v=0; |
|
vector<int> N,B; |
|
|
|
if(initialize_simplex(bigC,bigB,v,N,B)==SOLVELP_UNFEASIBLE){ |
|
return SOLVELP_UNFEASIBLE; |
|
} |
|
Mat_<double> c=bigC.colRange(1,bigC.cols), |
|
b=bigB.colRange(1,bigB.cols); |
|
|
|
int res=0; |
|
if((res=inner_simplex(c,b,v,N,B))==SOLVELP_UNBOUNDED){ |
|
return SOLVELP_UNBOUNDED; |
|
} |
|
|
|
//return the optimal solution |
|
const int z_size[]={1,c.cols}; |
|
z.create(2,z_size,CV_64FC1); |
|
MatIterator_<double> it=z.begin<double>(); |
|
for(int i=1;i<=c.cols;i++,it++){ |
|
std::vector<int>::iterator pos=B.begin(); |
|
if((pos=std::find(B.begin(),B.end(),i))==B.end()){ |
|
*it=0; |
|
}else{ |
|
*it=b.at<double>(pos-B.begin(),b.cols-1); |
|
} |
|
} |
|
|
|
return res; |
|
} |
|
|
|
const int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B){ |
|
N.resize(c.cols); |
|
N[0]=0; |
|
for (std::vector<int>::iterator it = N.begin()+1 ; it != N.end(); ++it){ |
|
*it=it[-1]+1; |
|
} |
|
B.resize(b.rows); |
|
B[0]=N.size(); |
|
for (std::vector<int>::iterator it = B.begin()+1 ; it != B.end(); ++it){ |
|
*it=it[-1]+1; |
|
} |
|
v=0; |
|
|
|
int k=0; |
|
{ |
|
double min=DBL_MAX; |
|
for(int i=0;i<b.rows;i++){ |
|
if(b(i,b.cols-1)<min){ |
|
min=b(i,b.cols-1); |
|
k=i; |
|
} |
|
} |
|
} |
|
|
|
if(b(k,b.cols-1)>=0){ |
|
N.erase(N.begin()); |
|
return 0; |
|
} |
|
|
|
Mat_<double> old_c=c.clone(); |
|
c=0; |
|
c(0,0)=-1; |
|
for(int i=0;i<b.rows;i++){ |
|
b(i,0)=-1; |
|
} |
|
|
|
print_simplex_state(c,b,v,N,B); |
|
|
|
dprintf("\tWE MAKE PIVOT\n"); |
|
pivot(c,b,v,N,B,k,0); |
|
|
|
print_simplex_state(c,b,v,N,B); |
|
|
|
inner_simplex(c,b,v,N,B); |
|
|
|
dprintf("\tAFTER INNER_SIMPLEX\n"); |
|
print_simplex_state(c,b,v,N,B); |
|
|
|
vector<int>::iterator it=std::find(B.begin(),B.end(),0); |
|
if(it!=B.end()){ |
|
int it_offset=it-B.begin(); |
|
if(b(it_offset,b.cols-1)>0){ |
|
return SOLVELP_UNFEASIBLE; |
|
} |
|
pivot(c,b,v,N,B,it_offset,0); |
|
} |
|
|
|
it=std::find(N.begin(),N.end(),0); |
|
int it_offset=it-N.begin(); |
|
std::iter_swap(it,N.begin()); |
|
swap_columns(c,it_offset,0); |
|
swap_columns(b,it_offset,0); |
|
|
|
dprintf("after swaps\n"); |
|
print_simplex_state(c,b,v,N,B); |
|
|
|
//start from 1, because we ignore x_0 |
|
c=0; |
|
v=0; |
|
for(int i=1;i<old_c.cols;i++){ |
|
if((it=std::find(N.begin(),N.end(),i))!=N.end()){ |
|
dprintf("i=%d from nonbasic\n",i); |
|
fflush(stdout); |
|
int it_offset=it-N.begin(); |
|
c(0,it_offset)+=old_c(0,i); |
|
print_matrix(c); |
|
}else{ |
|
//cv::Mat_ |
|
dprintf("i=%d from basic\n",i); |
|
fflush(stdout); |
|
int it_offset=std::find(B.begin(),B.end(),i)-B.begin(); |
|
c-=old_c(0,i)*b.row(it_offset).colRange(0,b.cols-1); |
|
v+=old_c(0,i)*b(it_offset,b.cols-1); |
|
print_matrix(c); |
|
} |
|
} |
|
|
|
dprintf("after restore\n"); |
|
print_simplex_state(c,b,v,N,B); |
|
|
|
N.erase(N.begin()); |
|
return 0; |
|
} |
|
|
|
const int inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B){ |
|
int count=0; |
|
while(1){ |
|
dprintf("iteration #%d\n",count++); |
|
|
|
static MatIterator_<double> pos_ptr; |
|
int e=-1,pos_ctr=0,min_var=INT_MAX; |
|
bool all_nonzero=true; |
|
for(pos_ptr=c.begin();pos_ptr!=c.end();pos_ptr++,pos_ctr++){ |
|
if(*pos_ptr==0){ |
|
all_nonzero=false; |
|
} |
|
if(*pos_ptr>0){ |
|
if(N[pos_ctr]<min_var){ |
|
e=pos_ctr; |
|
min_var=N[pos_ctr]; |
|
} |
|
} |
|
} |
|
if(e==-1){ |
|
dprintf("hello from e==-1\n"); |
|
print_matrix(c); |
|
if(all_nonzero==true){ |
|
return SOLVELP_SINGLE; |
|
}else{ |
|
return SOLVELP_MULTI; |
|
} |
|
} |
|
|
|
int l=-1; |
|
min_var=INT_MAX; |
|
double min=DBL_MAX; |
|
int row_it=0; |
|
double ite=0; |
|
MatIterator_<double> min_row_ptr=b.begin(); |
|
for(MatIterator_<double> it=b.begin();it!=b.end();it+=b.cols,row_it++){ |
|
double myite=0; |
|
//check constraints, select the tightest one, reinforcing Bland's rule |
|
if((myite=it[e])>0){ |
|
double val=it[b.cols-1]/myite; |
|
if(val<min || (val==min && B[row_it]<min_var)){ |
|
min_var=B[row_it]; |
|
min_row_ptr=it; |
|
ite=myite; |
|
min=val; |
|
l=row_it; |
|
} |
|
} |
|
} |
|
if(l==-1){ |
|
return SOLVELP_UNBOUNDED; |
|
} |
|
dprintf("the tightest constraint is in row %d with %g\n",l,min); |
|
|
|
pivot(c,b,v,N,B,l,e); |
|
|
|
dprintf("objective, v=%g\n",v); |
|
print_matrix(c); |
|
dprintf("constraints\n"); |
|
print_matrix(b); |
|
dprintf("non-basic: "); |
|
for (std::vector<int>::iterator it = N.begin() ; it != N.end(); ++it){ |
|
dprintf("%d, ",*it); |
|
} |
|
dprintf("\nbasic: "); |
|
for (std::vector<int>::iterator it = B.begin() ; it != B.end(); ++it){ |
|
dprintf("%d, ",*it); |
|
} |
|
dprintf("\n"); |
|
} |
|
} |
|
|
|
const inline void pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>& N,vector<int>& B, int leaving_index,int entering_index){ |
|
double coef=b(leaving_index,entering_index); |
|
for(int i=0;i<b.cols;i++){ |
|
if(i==entering_index){ |
|
b(leaving_index,i)=1/coef; |
|
}else{ |
|
b(leaving_index,i)/=coef; |
|
} |
|
} |
|
|
|
for(int i=0;i<b.rows;i++){ |
|
if(i!=leaving_index){ |
|
double coef=b(i,entering_index); |
|
for(int j=0;j<b.cols;j++){ |
|
if(j==entering_index){ |
|
b(i,j)=-coef*b(leaving_index,j); |
|
}else{ |
|
b(i,j)-=(coef*b(leaving_index,j)); |
|
} |
|
} |
|
} |
|
} |
|
|
|
//objective function |
|
coef=c(0,entering_index); |
|
for(int i=0;i<(b.cols-1);i++){ |
|
if(i==entering_index){ |
|
c(0,i)=-coef*b(leaving_index,i); |
|
}else{ |
|
c(0,i)-=coef*b(leaving_index,i); |
|
} |
|
} |
|
dprintf("v was %g\n",v); |
|
v+=coef*b(leaving_index,b.cols-1); |
|
|
|
int tmp=N[entering_index]; |
|
N[entering_index]=B[leaving_index]; |
|
B[leaving_index]=tmp; |
|
} |
|
|
|
const inline void swap_columns(Mat_<double>& A,int col1,int col2){ |
|
for(int i=0;i<A.rows;i++){ |
|
double tmp=A(i,col1); |
|
A(i,col1)=A(i,col2); |
|
A(i,col2)=tmp; |
|
} |
|
} |
|
}}
|
|
|