mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
538 lines
16 KiB
538 lines
16 KiB
#include "opencv2/core/core_c.h" |
|
#include "opencv2/ml/ml.hpp" |
|
|
|
#include <cstdio> |
|
/* |
|
|
|
*/ |
|
|
|
void help() |
|
{ |
|
printf("\nThe sample demonstrates how to train Random Trees classifier\n" |
|
"(or Boosting classifier, or MLP - see main()) using the provided dataset.\n" |
|
"\n" |
|
"We use the sample database letter-recognition.data\n" |
|
"from UCI Repository, here is the link:\n" |
|
"\n" |
|
"Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998).\n" |
|
"UCI Repository of machine learning databases\n" |
|
"[http://www.ics.uci.edu/~mlearn/MLRepository.html].\n" |
|
"Irvine, CA: University of California, Department of Information and Computer Science.\n" |
|
"\n" |
|
"The dataset consists of 20000 feature vectors along with the\n" |
|
"responses - capital latin letters A..Z.\n" |
|
"The first 16000 (10000 for boosting)) samples are used for training\n" |
|
"and the remaining 4000 (10000 for boosting) - to test the classifier.\n" |
|
"======================================================\n"); |
|
printf("\nThis is letter recognition sample.\n" |
|
"The usage: letter_recog [-data <path to letter-recognition.data>] \\\n" |
|
" [-save <output XML file for the classifier>] \\\n" |
|
" [-load <XML file with the pre-trained classifier>] \\\n" |
|
" [-boost|-mlp] # to use boost/mlp classifier instead of default Random Trees\n" ); |
|
} |
|
|
|
// This function reads data and responses from the file <filename> |
|
static int |
|
read_num_class_data( const char* filename, int var_count, |
|
CvMat** data, CvMat** responses ) |
|
{ |
|
const int M = 1024; |
|
FILE* f = fopen( filename, "rt" ); |
|
CvMemStorage* storage; |
|
CvSeq* seq; |
|
char buf[M+2]; |
|
float* el_ptr; |
|
CvSeqReader reader; |
|
int i, j; |
|
|
|
if( !f ) |
|
return 0; |
|
|
|
el_ptr = new float[var_count+1]; |
|
storage = cvCreateMemStorage(); |
|
seq = cvCreateSeq( 0, sizeof(*seq), (var_count+1)*sizeof(float), storage ); |
|
|
|
for(;;) |
|
{ |
|
char* ptr; |
|
if( !fgets( buf, M, f ) || !strchr( buf, ',' ) ) |
|
break; |
|
el_ptr[0] = buf[0]; |
|
ptr = buf+2; |
|
for( i = 1; i <= var_count; i++ ) |
|
{ |
|
int n = 0; |
|
sscanf( ptr, "%f%n", el_ptr + i, &n ); |
|
ptr += n + 1; |
|
} |
|
if( i <= var_count ) |
|
break; |
|
cvSeqPush( seq, el_ptr ); |
|
} |
|
fclose(f); |
|
|
|
*data = cvCreateMat( seq->total, var_count, CV_32F ); |
|
*responses = cvCreateMat( seq->total, 1, CV_32F ); |
|
|
|
cvStartReadSeq( seq, &reader ); |
|
|
|
for( i = 0; i < seq->total; i++ ) |
|
{ |
|
const float* sdata = (float*)reader.ptr + 1; |
|
float* ddata = data[0]->data.fl + var_count*i; |
|
float* dr = responses[0]->data.fl + i; |
|
|
|
for( j = 0; j < var_count; j++ ) |
|
ddata[j] = sdata[j]; |
|
*dr = sdata[-1]; |
|
CV_NEXT_SEQ_ELEM( seq->elem_size, reader ); |
|
} |
|
|
|
cvReleaseMemStorage( &storage ); |
|
delete el_ptr; |
|
return 1; |
|
} |
|
|
|
static |
|
int build_rtrees_classifier( char* data_filename, |
|
char* filename_to_save, char* filename_to_load ) |
|
{ |
|
CvMat* data = 0; |
|
CvMat* responses = 0; |
|
CvMat* var_type = 0; |
|
CvMat* sample_idx = 0; |
|
|
|
int ok = read_num_class_data( data_filename, 16, &data, &responses ); |
|
int nsamples_all = 0, ntrain_samples = 0; |
|
int i = 0; |
|
double train_hr = 0, test_hr = 0; |
|
CvRTrees forest; |
|
CvMat* var_importance = 0; |
|
|
|
if( !ok ) |
|
{ |
|
printf( "Could not read the database %s\n", data_filename ); |
|
return -1; |
|
} |
|
|
|
printf( "The database %s is loaded.\n", data_filename ); |
|
nsamples_all = data->rows; |
|
ntrain_samples = (int)(nsamples_all*0.8); |
|
|
|
// Create or load Random Trees classifier |
|
if( filename_to_load ) |
|
{ |
|
// load classifier from the specified file |
|
forest.load( filename_to_load ); |
|
ntrain_samples = 0; |
|
if( forest.get_tree_count() == 0 ) |
|
{ |
|
printf( "Could not read the classifier %s\n", filename_to_load ); |
|
return -1; |
|
} |
|
printf( "The classifier %s is loaded.\n", data_filename ); |
|
} |
|
else |
|
{ |
|
// create classifier by using <data> and <responses> |
|
printf( "Training the classifier ...\n"); |
|
|
|
// 1. create type mask |
|
var_type = cvCreateMat( data->cols + 1, 1, CV_8U ); |
|
cvSet( var_type, cvScalarAll(CV_VAR_ORDERED) ); |
|
cvSetReal1D( var_type, data->cols, CV_VAR_CATEGORICAL ); |
|
|
|
// 2. create sample_idx |
|
sample_idx = cvCreateMat( 1, nsamples_all, CV_8UC1 ); |
|
{ |
|
CvMat mat; |
|
cvGetCols( sample_idx, &mat, 0, ntrain_samples ); |
|
cvSet( &mat, cvRealScalar(1) ); |
|
|
|
cvGetCols( sample_idx, &mat, ntrain_samples, nsamples_all ); |
|
cvSetZero( &mat ); |
|
} |
|
|
|
// 3. train classifier |
|
forest.train( data, CV_ROW_SAMPLE, responses, 0, sample_idx, var_type, 0, |
|
CvRTParams(10,10,0,false,15,0,true,4,100,0.01f,CV_TERMCRIT_ITER)); |
|
printf( "\n"); |
|
} |
|
|
|
// compute prediction error on train and test data |
|
for( i = 0; i < nsamples_all; i++ ) |
|
{ |
|
double r; |
|
CvMat sample; |
|
cvGetRow( data, &sample, i ); |
|
|
|
r = forest.predict( &sample ); |
|
r = fabs((double)r - responses->data.fl[i]) <= FLT_EPSILON ? 1 : 0; |
|
|
|
if( i < ntrain_samples ) |
|
train_hr += r; |
|
else |
|
test_hr += r; |
|
} |
|
|
|
test_hr /= (double)(nsamples_all-ntrain_samples); |
|
train_hr /= (double)ntrain_samples; |
|
printf( "Recognition rate: train = %.1f%%, test = %.1f%%\n", |
|
train_hr*100., test_hr*100. ); |
|
|
|
printf( "Number of trees: %d\n", forest.get_tree_count() ); |
|
|
|
// Print variable importance |
|
var_importance = (CvMat*)forest.get_var_importance(); |
|
if( var_importance ) |
|
{ |
|
double rt_imp_sum = cvSum( var_importance ).val[0]; |
|
printf("var#\timportance (in %%):\n"); |
|
for( i = 0; i < var_importance->cols; i++ ) |
|
printf( "%-2d\t%-4.1f\n", i, |
|
100.f*var_importance->data.fl[i]/rt_imp_sum); |
|
} |
|
|
|
//Print some proximitites |
|
printf( "Proximities between some samples corresponding to the letter 'T':\n" ); |
|
{ |
|
CvMat sample1, sample2; |
|
const int pairs[][2] = {{0,103}, {0,106}, {106,103}, {-1,-1}}; |
|
|
|
for( i = 0; pairs[i][0] >= 0; i++ ) |
|
{ |
|
cvGetRow( data, &sample1, pairs[i][0] ); |
|
cvGetRow( data, &sample2, pairs[i][1] ); |
|
printf( "proximity(%d,%d) = %.1f%%\n", pairs[i][0], pairs[i][1], |
|
forest.get_proximity( &sample1, &sample2 )*100. ); |
|
} |
|
} |
|
|
|
// Save Random Trees classifier to file if needed |
|
if( filename_to_save ) |
|
forest.save( filename_to_save ); |
|
|
|
cvReleaseMat( &sample_idx ); |
|
cvReleaseMat( &var_type ); |
|
cvReleaseMat( &data ); |
|
cvReleaseMat( &responses ); |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static |
|
int build_boost_classifier( char* data_filename, |
|
char* filename_to_save, char* filename_to_load ) |
|
{ |
|
const int class_count = 26; |
|
CvMat* data = 0; |
|
CvMat* responses = 0; |
|
CvMat* var_type = 0; |
|
CvMat* temp_sample = 0; |
|
CvMat* weak_responses = 0; |
|
|
|
int ok = read_num_class_data( data_filename, 16, &data, &responses ); |
|
int nsamples_all = 0, ntrain_samples = 0; |
|
int var_count; |
|
int i, j, k; |
|
double train_hr = 0, test_hr = 0; |
|
CvBoost boost; |
|
|
|
if( !ok ) |
|
{ |
|
printf( "Could not read the database %s\n", data_filename ); |
|
return -1; |
|
} |
|
|
|
printf( "The database %s is loaded.\n", data_filename ); |
|
nsamples_all = data->rows; |
|
ntrain_samples = (int)(nsamples_all*0.5); |
|
var_count = data->cols; |
|
|
|
// Create or load Boosted Tree classifier |
|
if( filename_to_load ) |
|
{ |
|
// load classifier from the specified file |
|
boost.load( filename_to_load ); |
|
ntrain_samples = 0; |
|
if( !boost.get_weak_predictors() ) |
|
{ |
|
printf( "Could not read the classifier %s\n", filename_to_load ); |
|
return -1; |
|
} |
|
printf( "The classifier %s is loaded.\n", data_filename ); |
|
} |
|
else |
|
{ |
|
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|
// |
|
// As currently boosted tree classifier in MLL can only be trained |
|
// for 2-class problems, we transform the training database by |
|
// "unrolling" each training sample as many times as the number of |
|
// classes (26) that we have. |
|
// |
|
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|
|
|
CvMat* new_data = cvCreateMat( ntrain_samples*class_count, var_count + 1, CV_32F ); |
|
CvMat* new_responses = cvCreateMat( ntrain_samples*class_count, 1, CV_32S ); |
|
|
|
// 1. unroll the database type mask |
|
printf( "Unrolling the database...\n"); |
|
for( i = 0; i < ntrain_samples; i++ ) |
|
{ |
|
float* data_row = (float*)(data->data.ptr + data->step*i); |
|
for( j = 0; j < class_count; j++ ) |
|
{ |
|
float* new_data_row = (float*)(new_data->data.ptr + |
|
new_data->step*(i*class_count+j)); |
|
for( k = 0; k < var_count; k++ ) |
|
new_data_row[k] = data_row[k]; |
|
new_data_row[var_count] = (float)j; |
|
new_responses->data.i[i*class_count + j] = responses->data.fl[i] == j+'A'; |
|
} |
|
} |
|
|
|
// 2. create type mask |
|
var_type = cvCreateMat( var_count + 2, 1, CV_8U ); |
|
cvSet( var_type, cvScalarAll(CV_VAR_ORDERED) ); |
|
// the last indicator variable, as well |
|
// as the new (binary) response are categorical |
|
cvSetReal1D( var_type, var_count, CV_VAR_CATEGORICAL ); |
|
cvSetReal1D( var_type, var_count+1, CV_VAR_CATEGORICAL ); |
|
|
|
// 3. train classifier |
|
printf( "Training the classifier (may take a few minutes)...\n"); |
|
boost.train( new_data, CV_ROW_SAMPLE, new_responses, 0, 0, var_type, 0, |
|
CvBoostParams(CvBoost::REAL, 100, 0.95, 5, false, 0 )); |
|
cvReleaseMat( &new_data ); |
|
cvReleaseMat( &new_responses ); |
|
printf("\n"); |
|
} |
|
|
|
temp_sample = cvCreateMat( 1, var_count + 1, CV_32F ); |
|
weak_responses = cvCreateMat( 1, boost.get_weak_predictors()->total, CV_32F ); |
|
|
|
// compute prediction error on train and test data |
|
for( i = 0; i < nsamples_all; i++ ) |
|
{ |
|
int best_class = 0; |
|
double max_sum = -DBL_MAX; |
|
double r; |
|
CvMat sample; |
|
cvGetRow( data, &sample, i ); |
|
for( k = 0; k < var_count; k++ ) |
|
temp_sample->data.fl[k] = sample.data.fl[k]; |
|
|
|
for( j = 0; j < class_count; j++ ) |
|
{ |
|
temp_sample->data.fl[var_count] = (float)j; |
|
boost.predict( temp_sample, 0, weak_responses ); |
|
double sum = cvSum( weak_responses ).val[0]; |
|
if( max_sum < sum ) |
|
{ |
|
max_sum = sum; |
|
best_class = j + 'A'; |
|
} |
|
} |
|
|
|
r = fabs(best_class - responses->data.fl[i]) < FLT_EPSILON ? 1 : 0; |
|
|
|
if( i < ntrain_samples ) |
|
train_hr += r; |
|
else |
|
test_hr += r; |
|
} |
|
|
|
test_hr /= (double)(nsamples_all-ntrain_samples); |
|
train_hr /= (double)ntrain_samples; |
|
printf( "Recognition rate: train = %.1f%%, test = %.1f%%\n", |
|
train_hr*100., test_hr*100. ); |
|
|
|
printf( "Number of trees: %d\n", boost.get_weak_predictors()->total ); |
|
|
|
// Save classifier to file if needed |
|
if( filename_to_save ) |
|
boost.save( filename_to_save ); |
|
|
|
cvReleaseMat( &temp_sample ); |
|
cvReleaseMat( &weak_responses ); |
|
cvReleaseMat( &var_type ); |
|
cvReleaseMat( &data ); |
|
cvReleaseMat( &responses ); |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static |
|
int build_mlp_classifier( char* data_filename, |
|
char* filename_to_save, char* filename_to_load ) |
|
{ |
|
const int class_count = 26; |
|
CvMat* data = 0; |
|
CvMat train_data; |
|
CvMat* responses = 0; |
|
CvMat* mlp_response = 0; |
|
|
|
int ok = read_num_class_data( data_filename, 16, &data, &responses ); |
|
int nsamples_all = 0, ntrain_samples = 0; |
|
int i, j; |
|
double train_hr = 0, test_hr = 0; |
|
CvANN_MLP mlp; |
|
|
|
if( !ok ) |
|
{ |
|
printf( "Could not read the database %s\n", data_filename ); |
|
return -1; |
|
} |
|
|
|
printf( "The database %s is loaded.\n", data_filename ); |
|
nsamples_all = data->rows; |
|
ntrain_samples = (int)(nsamples_all*0.8); |
|
|
|
// Create or load MLP classifier |
|
if( filename_to_load ) |
|
{ |
|
// load classifier from the specified file |
|
mlp.load( filename_to_load ); |
|
ntrain_samples = 0; |
|
if( !mlp.get_layer_count() ) |
|
{ |
|
printf( "Could not read the classifier %s\n", filename_to_load ); |
|
return -1; |
|
} |
|
printf( "The classifier %s is loaded.\n", data_filename ); |
|
} |
|
else |
|
{ |
|
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|
// |
|
// MLP does not support categorical variables by explicitly. |
|
// So, instead of the output class label, we will use |
|
// a binary vector of <class_count> components for training and, |
|
// therefore, MLP will give us a vector of "probabilities" at the |
|
// prediction stage |
|
// |
|
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|
|
|
CvMat* new_responses = cvCreateMat( ntrain_samples, class_count, CV_32F ); |
|
|
|
// 1. unroll the responses |
|
printf( "Unrolling the responses...\n"); |
|
for( i = 0; i < ntrain_samples; i++ ) |
|
{ |
|
int cls_label = cvRound(responses->data.fl[i]) - 'A'; |
|
float* bit_vec = (float*)(new_responses->data.ptr + i*new_responses->step); |
|
for( j = 0; j < class_count; j++ ) |
|
bit_vec[j] = 0.f; |
|
bit_vec[cls_label] = 1.f; |
|
} |
|
cvGetRows( data, &train_data, 0, ntrain_samples ); |
|
|
|
// 2. train classifier |
|
int layer_sz[] = { data->cols, 100, 100, class_count }; |
|
CvMat layer_sizes = |
|
cvMat( 1, (int)(sizeof(layer_sz)/sizeof(layer_sz[0])), CV_32S, layer_sz ); |
|
mlp.create( &layer_sizes ); |
|
printf( "Training the classifier (may take a few minutes)...\n"); |
|
mlp.train( &train_data, new_responses, 0, 0, |
|
CvANN_MLP_TrainParams(cvTermCriteria(CV_TERMCRIT_ITER,300,0.01), |
|
#if 1 |
|
CvANN_MLP_TrainParams::BACKPROP,0.001)); |
|
#else |
|
CvANN_MLP_TrainParams::RPROP,0.05)); |
|
#endif |
|
cvReleaseMat( &new_responses ); |
|
printf("\n"); |
|
} |
|
|
|
mlp_response = cvCreateMat( 1, class_count, CV_32F ); |
|
|
|
// compute prediction error on train and test data |
|
for( i = 0; i < nsamples_all; i++ ) |
|
{ |
|
int best_class; |
|
CvMat sample; |
|
cvGetRow( data, &sample, i ); |
|
CvPoint max_loc = {0,0}; |
|
mlp.predict( &sample, mlp_response ); |
|
cvMinMaxLoc( mlp_response, 0, 0, 0, &max_loc, 0 ); |
|
best_class = max_loc.x + 'A'; |
|
|
|
int r = fabs((double)best_class - responses->data.fl[i]) < FLT_EPSILON ? 1 : 0; |
|
|
|
if( i < ntrain_samples ) |
|
train_hr += r; |
|
else |
|
test_hr += r; |
|
} |
|
|
|
test_hr /= (double)(nsamples_all-ntrain_samples); |
|
train_hr /= (double)ntrain_samples; |
|
printf( "Recognition rate: train = %.1f%%, test = %.1f%%\n", |
|
train_hr*100., test_hr*100. ); |
|
|
|
// Save classifier to file if needed |
|
if( filename_to_save ) |
|
mlp.save( filename_to_save ); |
|
|
|
cvReleaseMat( &mlp_response ); |
|
cvReleaseMat( &data ); |
|
cvReleaseMat( &responses ); |
|
|
|
return 0; |
|
} |
|
|
|
|
|
int main( int argc, char *argv[] ) |
|
{ |
|
char* filename_to_save = 0; |
|
char* filename_to_load = 0; |
|
char default_data_filename[] = "./letter-recognition.data"; |
|
char* data_filename = default_data_filename; |
|
int method = 0; |
|
|
|
int i; |
|
for( i = 1; i < argc; i++ ) |
|
{ |
|
if( strcmp(argv[i],"-data") == 0 ) // flag "-data letter_recognition.xml" |
|
{ |
|
i++; |
|
data_filename = argv[i]; |
|
} |
|
else if( strcmp(argv[i],"-save") == 0 ) // flag "-save filename.xml" |
|
{ |
|
i++; |
|
filename_to_save = argv[i]; |
|
} |
|
else if( strcmp(argv[i],"-load") == 0) // flag "-load filename.xml" |
|
{ |
|
i++; |
|
filename_to_load = argv[i]; |
|
} |
|
else if( strcmp(argv[i],"-boost") == 0) |
|
{ |
|
method = 1; |
|
} |
|
else if( strcmp(argv[i],"-mlp") == 0 ) |
|
{ |
|
method = 2; |
|
} |
|
else |
|
break; |
|
} |
|
|
|
if( i < argc || |
|
(method == 0 ? |
|
build_rtrees_classifier( data_filename, filename_to_save, filename_to_load ) : |
|
method == 1 ? |
|
build_boost_classifier( data_filename, filename_to_save, filename_to_load ) : |
|
method == 2 ? |
|
build_mlp_classifier( data_filename, filename_to_save, filename_to_load ) : |
|
-1) < 0) |
|
{ |
|
help(); |
|
} |
|
return 0; |
|
}
|
|
|