mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
161 lines
5.4 KiB
161 lines
5.4 KiB
#include "opencv2/highgui/highgui.hpp" |
|
#include "opencv2/core/core.hpp" |
|
#include "opencv2/imgproc/imgproc.hpp" |
|
#include "opencv2/features2d/features2d.hpp" |
|
|
|
#include <iostream> |
|
#include <fstream> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
void help() |
|
{ |
|
cout << "This program shows the use of the Calonder point descriptor classifier" |
|
"SURF is used to detect interest points, Calonder is used to describe/match these points\n" |
|
"Format:" << endl << |
|
" classifier_file(to write) test_image file_with_train_images_filenames(txt)" << |
|
" or" << endl << |
|
" classifier_file(to read) test_image" |
|
"Using OpenCV version %s\n" << CV_VERSION << "\n" |
|
<< endl; |
|
} |
|
/* |
|
* Generates random perspective transform of image |
|
*/ |
|
void warpPerspectiveRand( const Mat& src, Mat& dst, Mat& H, RNG& rng ) |
|
{ |
|
H.create(3, 3, CV_32FC1); |
|
H.at<float>(0,0) = rng.uniform( 0.8f, 1.2f); |
|
H.at<float>(0,1) = rng.uniform(-0.1f, 0.1f); |
|
H.at<float>(0,2) = rng.uniform(-0.1f, 0.1f)*src.cols; |
|
H.at<float>(1,0) = rng.uniform(-0.1f, 0.1f); |
|
H.at<float>(1,1) = rng.uniform( 0.8f, 1.2f); |
|
H.at<float>(1,2) = rng.uniform(-0.1f, 0.1f)*src.rows; |
|
H.at<float>(2,0) = rng.uniform( -1e-4f, 1e-4f); |
|
H.at<float>(2,1) = rng.uniform( -1e-4f, 1e-4f); |
|
H.at<float>(2,2) = rng.uniform( 0.8f, 1.2f); |
|
|
|
warpPerspective( src, dst, H, src.size() ); |
|
} |
|
|
|
/* |
|
* Trains Calonder classifier and writes trained classifier in file: |
|
* imgFilename - name of .txt file which contains list of full filenames of train images, |
|
* classifierFilename - name of binary file in which classifier will be written. |
|
* |
|
* To train Calonder classifier RTreeClassifier class need to be used. |
|
*/ |
|
void trainCalonderClassifier( const string& classifierFilename, const string& imgFilename ) |
|
{ |
|
// Reads train images |
|
ifstream is( imgFilename.c_str(), ifstream::in ); |
|
vector<Mat> trainImgs; |
|
while( !is.eof() ) |
|
{ |
|
string str; |
|
getline( is, str ); |
|
if (str.empty()) break; |
|
Mat img = imread( str, CV_LOAD_IMAGE_GRAYSCALE ); |
|
if( !img.empty() ) |
|
trainImgs.push_back( img ); |
|
} |
|
if( trainImgs.empty() ) |
|
{ |
|
cout << "All train images can not be read." << endl; |
|
exit(-1); |
|
} |
|
cout << trainImgs.size() << " train images were read." << endl; |
|
|
|
// Extracts keypoints from train images |
|
SurfFeatureDetector detector; |
|
vector<BaseKeypoint> trainPoints; |
|
vector<IplImage> iplTrainImgs(trainImgs.size()); |
|
for( size_t imgIdx = 0; imgIdx < trainImgs.size(); imgIdx++ ) |
|
{ |
|
iplTrainImgs[imgIdx] = trainImgs[imgIdx]; |
|
vector<KeyPoint> kps; detector.detect( trainImgs[imgIdx], kps ); |
|
|
|
for( size_t pointIdx = 0; pointIdx < kps.size(); pointIdx++ ) |
|
{ |
|
Point2f p = kps[pointIdx].pt; |
|
trainPoints.push_back( BaseKeypoint(cvRound(p.x), cvRound(p.y), &iplTrainImgs[imgIdx]) ); |
|
} |
|
} |
|
|
|
// Trains Calonder classifier on extracted points |
|
RTreeClassifier classifier; |
|
classifier.train( trainPoints, theRNG(), 48, 9, 100 ); |
|
// Writes classifier |
|
classifier.write( classifierFilename.c_str() ); |
|
} |
|
|
|
/* |
|
* Test Calonder classifier to match keypoints on given image: |
|
* classifierFilename - name of file from which classifier will be read, |
|
* imgFilename - test image filename. |
|
* |
|
* To calculate keypoint descriptors you may use RTreeClassifier class (as to train), |
|
* but it is convenient to use CalonderDescriptorExtractor class which is wrapper of |
|
* RTreeClassifier. |
|
*/ |
|
void testCalonderClassifier( const string& classifierFilename, const string& imgFilename ) |
|
{ |
|
Mat img1 = imread( imgFilename, CV_LOAD_IMAGE_GRAYSCALE ), img2, H12; |
|
if( img1.empty() ) |
|
{ |
|
cout << "Test image can not be read." << endl; |
|
exit(-1); |
|
} |
|
warpPerspectiveRand( img1, img2, H12, theRNG() ); |
|
|
|
// Exstract keypoints from test images |
|
SurfFeatureDetector detector; |
|
vector<KeyPoint> keypoints1; detector.detect( img1, keypoints1 ); |
|
vector<KeyPoint> keypoints2; detector.detect( img2, keypoints2 ); |
|
|
|
// Compute descriptors |
|
CalonderDescriptorExtractor<float> de( classifierFilename ); |
|
Mat descriptors1; de.compute( img1, keypoints1, descriptors1 ); |
|
Mat descriptors2; de.compute( img2, keypoints2, descriptors2 ); |
|
|
|
// Match descriptors |
|
BruteForceMatcher<L1<float> > matcher; |
|
vector<DMatch> matches; |
|
matcher.match( descriptors1, descriptors2, matches ); |
|
|
|
// Prepare inlier mask |
|
vector<char> matchesMask( matches.size(), 0 ); |
|
vector<Point2f> points1; KeyPoint::convert( keypoints1, points1 ); |
|
vector<Point2f> points2; KeyPoint::convert( keypoints2, points2 ); |
|
Mat points1t; perspectiveTransform(Mat(points1), points1t, H12); |
|
for( size_t mi = 0; mi < matches.size(); mi++ ) |
|
{ |
|
if( norm(points2[matches[mi].trainIdx] - points1t.at<Point2f>(mi,0)) < 4 ) // inlier |
|
matchesMask[mi] = 1; |
|
} |
|
|
|
// Draw |
|
Mat drawImg; |
|
drawMatches( img1, keypoints1, img2, keypoints2, matches, drawImg, CV_RGB(0, 255, 0), CV_RGB(0, 0, 255), matchesMask ); |
|
string winName = "Matches"; |
|
namedWindow( winName, WINDOW_AUTOSIZE ); |
|
imshow( winName, drawImg ); |
|
waitKey(); |
|
} |
|
|
|
int main( int argc, char **argv ) |
|
{ |
|
if( argc != 4 && argc != 3 ) |
|
{ |
|
help(); |
|
return -1; |
|
} |
|
|
|
if( argc == 4 ) |
|
trainCalonderClassifier( argv[1], argv[3] ); |
|
|
|
testCalonderClassifier( argv[1], argv[2] ); |
|
|
|
return 0; |
|
}
|
|
|