Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
904 lines
27 KiB
904 lines
27 KiB
/*********************************************************************** |
|
* Software License Agreement (BSD License) |
|
* |
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. |
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. |
|
* |
|
* THE BSD LICENSE |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
*************************************************************************/ |
|
|
|
#ifndef OPENCV_FLANN_DIST_H_ |
|
#define OPENCV_FLANN_DIST_H_ |
|
|
|
#include <cmath> |
|
#include <cstdlib> |
|
#include <string.h> |
|
#ifdef _MSC_VER |
|
typedef unsigned __int32 uint32_t; |
|
typedef unsigned __int64 uint64_t; |
|
#else |
|
#include <stdint.h> |
|
#endif |
|
|
|
#include "defines.h" |
|
|
|
#if defined _WIN32 && defined(_M_ARM) |
|
# include <Intrin.h> |
|
#endif |
|
|
|
#if defined(__ARM_NEON__) && !defined(__CUDACC__) |
|
# include "arm_neon.h" |
|
#endif |
|
|
|
namespace cvflann |
|
{ |
|
|
|
template<typename T> |
|
inline T abs(T x) { return (x<0) ? -x : x; } |
|
|
|
template<> |
|
inline int abs<int>(int x) { return ::abs(x); } |
|
|
|
template<> |
|
inline float abs<float>(float x) { return fabsf(x); } |
|
|
|
template<> |
|
inline double abs<double>(double x) { return fabs(x); } |
|
|
|
template<typename T> |
|
struct Accumulator { typedef T Type; }; |
|
template<> |
|
struct Accumulator<unsigned char> { typedef float Type; }; |
|
template<> |
|
struct Accumulator<unsigned short> { typedef float Type; }; |
|
template<> |
|
struct Accumulator<unsigned int> { typedef float Type; }; |
|
template<> |
|
struct Accumulator<char> { typedef float Type; }; |
|
template<> |
|
struct Accumulator<short> { typedef float Type; }; |
|
template<> |
|
struct Accumulator<int> { typedef float Type; }; |
|
|
|
#undef True |
|
#undef False |
|
|
|
class True |
|
{ |
|
}; |
|
|
|
class False |
|
{ |
|
}; |
|
|
|
|
|
/** |
|
* Squared Euclidean distance functor. |
|
* |
|
* This is the simpler, unrolled version. This is preferable for |
|
* very low dimensionality data (eg 3D points) |
|
*/ |
|
template<class T> |
|
struct L2_Simple |
|
{ |
|
typedef True is_kdtree_distance; |
|
typedef True is_vector_space_distance; |
|
|
|
typedef T ElementType; |
|
typedef typename Accumulator<T>::Type ResultType; |
|
|
|
template <typename Iterator1, typename Iterator2> |
|
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const |
|
{ |
|
ResultType result = ResultType(); |
|
ResultType diff; |
|
for(size_t i = 0; i < size; ++i ) { |
|
diff = (ResultType)(*a++ - *b++); |
|
result += diff*diff; |
|
} |
|
return result; |
|
} |
|
|
|
template <typename U, typename V> |
|
inline ResultType accum_dist(const U& a, const V& b, int) const |
|
{ |
|
return (a-b)*(a-b); |
|
} |
|
}; |
|
|
|
|
|
|
|
/** |
|
* Squared Euclidean distance functor, optimized version |
|
*/ |
|
template<class T> |
|
struct L2 |
|
{ |
|
typedef True is_kdtree_distance; |
|
typedef True is_vector_space_distance; |
|
|
|
typedef T ElementType; |
|
typedef typename Accumulator<T>::Type ResultType; |
|
|
|
/** |
|
* Compute the squared Euclidean distance between two vectors. |
|
* |
|
* This is highly optimised, with loop unrolling, as it is one |
|
* of the most expensive inner loops. |
|
* |
|
* The computation of squared root at the end is omitted for |
|
* efficiency. |
|
*/ |
|
template <typename Iterator1, typename Iterator2> |
|
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const |
|
{ |
|
ResultType result = ResultType(); |
|
ResultType diff0, diff1, diff2, diff3; |
|
Iterator1 last = a + size; |
|
Iterator1 lastgroup = last - 3; |
|
|
|
/* Process 4 items with each loop for efficiency. */ |
|
while (a < lastgroup) { |
|
diff0 = (ResultType)(a[0] - b[0]); |
|
diff1 = (ResultType)(a[1] - b[1]); |
|
diff2 = (ResultType)(a[2] - b[2]); |
|
diff3 = (ResultType)(a[3] - b[3]); |
|
result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3; |
|
a += 4; |
|
b += 4; |
|
|
|
if ((worst_dist>0)&&(result>worst_dist)) { |
|
return result; |
|
} |
|
} |
|
/* Process last 0-3 pixels. Not needed for standard vector lengths. */ |
|
while (a < last) { |
|
diff0 = (ResultType)(*a++ - *b++); |
|
result += diff0 * diff0; |
|
} |
|
return result; |
|
} |
|
|
|
/** |
|
* Partial euclidean distance, using just one dimension. This is used by the |
|
* kd-tree when computing partial distances while traversing the tree. |
|
* |
|
* Squared root is omitted for efficiency. |
|
*/ |
|
template <typename U, typename V> |
|
inline ResultType accum_dist(const U& a, const V& b, int) const |
|
{ |
|
return (a-b)*(a-b); |
|
} |
|
}; |
|
|
|
|
|
/* |
|
* Manhattan distance functor, optimized version |
|
*/ |
|
template<class T> |
|
struct L1 |
|
{ |
|
typedef True is_kdtree_distance; |
|
typedef True is_vector_space_distance; |
|
|
|
typedef T ElementType; |
|
typedef typename Accumulator<T>::Type ResultType; |
|
|
|
/** |
|
* Compute the Manhattan (L_1) distance between two vectors. |
|
* |
|
* This is highly optimised, with loop unrolling, as it is one |
|
* of the most expensive inner loops. |
|
*/ |
|
template <typename Iterator1, typename Iterator2> |
|
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const |
|
{ |
|
ResultType result = ResultType(); |
|
ResultType diff0, diff1, diff2, diff3; |
|
Iterator1 last = a + size; |
|
Iterator1 lastgroup = last - 3; |
|
|
|
/* Process 4 items with each loop for efficiency. */ |
|
while (a < lastgroup) { |
|
diff0 = (ResultType)abs(a[0] - b[0]); |
|
diff1 = (ResultType)abs(a[1] - b[1]); |
|
diff2 = (ResultType)abs(a[2] - b[2]); |
|
diff3 = (ResultType)abs(a[3] - b[3]); |
|
result += diff0 + diff1 + diff2 + diff3; |
|
a += 4; |
|
b += 4; |
|
|
|
if ((worst_dist>0)&&(result>worst_dist)) { |
|
return result; |
|
} |
|
} |
|
/* Process last 0-3 pixels. Not needed for standard vector lengths. */ |
|
while (a < last) { |
|
diff0 = (ResultType)abs(*a++ - *b++); |
|
result += diff0; |
|
} |
|
return result; |
|
} |
|
|
|
/** |
|
* Partial distance, used by the kd-tree. |
|
*/ |
|
template <typename U, typename V> |
|
inline ResultType accum_dist(const U& a, const V& b, int) const |
|
{ |
|
return abs(a-b); |
|
} |
|
}; |
|
|
|
|
|
|
|
template<class T> |
|
struct MinkowskiDistance |
|
{ |
|
typedef True is_kdtree_distance; |
|
typedef True is_vector_space_distance; |
|
|
|
typedef T ElementType; |
|
typedef typename Accumulator<T>::Type ResultType; |
|
|
|
int order; |
|
|
|
MinkowskiDistance(int order_) : order(order_) {} |
|
|
|
/** |
|
* Compute the Minkowsky (L_p) distance between two vectors. |
|
* |
|
* This is highly optimised, with loop unrolling, as it is one |
|
* of the most expensive inner loops. |
|
* |
|
* The computation of squared root at the end is omitted for |
|
* efficiency. |
|
*/ |
|
template <typename Iterator1, typename Iterator2> |
|
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const |
|
{ |
|
ResultType result = ResultType(); |
|
ResultType diff0, diff1, diff2, diff3; |
|
Iterator1 last = a + size; |
|
Iterator1 lastgroup = last - 3; |
|
|
|
/* Process 4 items with each loop for efficiency. */ |
|
while (a < lastgroup) { |
|
diff0 = (ResultType)abs(a[0] - b[0]); |
|
diff1 = (ResultType)abs(a[1] - b[1]); |
|
diff2 = (ResultType)abs(a[2] - b[2]); |
|
diff3 = (ResultType)abs(a[3] - b[3]); |
|
result += pow(diff0,order) + pow(diff1,order) + pow(diff2,order) + pow(diff3,order); |
|
a += 4; |
|
b += 4; |
|
|
|
if ((worst_dist>0)&&(result>worst_dist)) { |
|
return result; |
|
} |
|
} |
|
/* Process last 0-3 pixels. Not needed for standard vector lengths. */ |
|
while (a < last) { |
|
diff0 = (ResultType)abs(*a++ - *b++); |
|
result += pow(diff0,order); |
|
} |
|
return result; |
|
} |
|
|
|
/** |
|
* Partial distance, used by the kd-tree. |
|
*/ |
|
template <typename U, typename V> |
|
inline ResultType accum_dist(const U& a, const V& b, int) const |
|
{ |
|
return pow(static_cast<ResultType>(abs(a-b)),order); |
|
} |
|
}; |
|
|
|
|
|
|
|
template<class T> |
|
struct MaxDistance |
|
{ |
|
typedef False is_kdtree_distance; |
|
typedef True is_vector_space_distance; |
|
|
|
typedef T ElementType; |
|
typedef typename Accumulator<T>::Type ResultType; |
|
|
|
/** |
|
* Compute the max distance (L_infinity) between two vectors. |
|
* |
|
* This distance is not a valid kdtree distance, it's not dimensionwise additive. |
|
*/ |
|
template <typename Iterator1, typename Iterator2> |
|
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const |
|
{ |
|
ResultType result = ResultType(); |
|
ResultType diff0, diff1, diff2, diff3; |
|
Iterator1 last = a + size; |
|
Iterator1 lastgroup = last - 3; |
|
|
|
/* Process 4 items with each loop for efficiency. */ |
|
while (a < lastgroup) { |
|
diff0 = abs(a[0] - b[0]); |
|
diff1 = abs(a[1] - b[1]); |
|
diff2 = abs(a[2] - b[2]); |
|
diff3 = abs(a[3] - b[3]); |
|
if (diff0>result) {result = diff0; } |
|
if (diff1>result) {result = diff1; } |
|
if (diff2>result) {result = diff2; } |
|
if (diff3>result) {result = diff3; } |
|
a += 4; |
|
b += 4; |
|
|
|
if ((worst_dist>0)&&(result>worst_dist)) { |
|
return result; |
|
} |
|
} |
|
/* Process last 0-3 pixels. Not needed for standard vector lengths. */ |
|
while (a < last) { |
|
diff0 = abs(*a++ - *b++); |
|
result = (diff0>result) ? diff0 : result; |
|
} |
|
return result; |
|
} |
|
|
|
/* This distance functor is not dimension-wise additive, which |
|
* makes it an invalid kd-tree distance, not implementing the accum_dist method */ |
|
|
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
/** |
|
* Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor |
|
* bit count of A exclusive XOR'ed with B |
|
*/ |
|
struct HammingLUT |
|
{ |
|
typedef False is_kdtree_distance; |
|
typedef False is_vector_space_distance; |
|
|
|
typedef unsigned char ElementType; |
|
typedef int ResultType; |
|
|
|
/** this will count the bits in a ^ b |
|
*/ |
|
ResultType operator()(const unsigned char* a, const unsigned char* b, size_t size) const |
|
{ |
|
static const uchar popCountTable[] = |
|
{ |
|
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, |
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
|
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 |
|
}; |
|
ResultType result = 0; |
|
for (size_t i = 0; i < size; i++) { |
|
result += popCountTable[a[i] ^ b[i]]; |
|
} |
|
return result; |
|
} |
|
}; |
|
|
|
/** |
|
* Hamming distance functor (pop count between two binary vectors, i.e. xor them and count the number of bits set) |
|
* That code was taken from brief.cpp in OpenCV |
|
*/ |
|
template<class T> |
|
struct Hamming |
|
{ |
|
typedef False is_kdtree_distance; |
|
typedef False is_vector_space_distance; |
|
|
|
|
|
typedef T ElementType; |
|
typedef int ResultType; |
|
|
|
template<typename Iterator1, typename Iterator2> |
|
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const |
|
{ |
|
ResultType result = 0; |
|
#if defined(__ARM_NEON__) && !defined(__CUDACC__) |
|
{ |
|
uint32x4_t bits = vmovq_n_u32(0); |
|
for (size_t i = 0; i < size; i += 16) { |
|
uint8x16_t A_vec = vld1q_u8 (a + i); |
|
uint8x16_t B_vec = vld1q_u8 (b + i); |
|
uint8x16_t AxorB = veorq_u8 (A_vec, B_vec); |
|
uint8x16_t bitsSet = vcntq_u8 (AxorB); |
|
uint16x8_t bitSet8 = vpaddlq_u8 (bitsSet); |
|
uint32x4_t bitSet4 = vpaddlq_u16 (bitSet8); |
|
bits = vaddq_u32(bits, bitSet4); |
|
} |
|
uint64x2_t bitSet2 = vpaddlq_u32 (bits); |
|
result = vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),0); |
|
result += vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),2); |
|
} |
|
#elif __GNUC__ |
|
{ |
|
//for portability just use unsigned long -- and use the __builtin_popcountll (see docs for __builtin_popcountll) |
|
typedef unsigned long long pop_t; |
|
const size_t modulo = size % sizeof(pop_t); |
|
const pop_t* a2 = reinterpret_cast<const pop_t*> (a); |
|
const pop_t* b2 = reinterpret_cast<const pop_t*> (b); |
|
const pop_t* a2_end = a2 + (size / sizeof(pop_t)); |
|
|
|
for (; a2 != a2_end; ++a2, ++b2) result += __builtin_popcountll((*a2) ^ (*b2)); |
|
|
|
if (modulo) { |
|
//in the case where size is not dividable by sizeof(size_t) |
|
//need to mask off the bits at the end |
|
pop_t a_final = 0, b_final = 0; |
|
memcpy(&a_final, a2, modulo); |
|
memcpy(&b_final, b2, modulo); |
|
result += __builtin_popcountll(a_final ^ b_final); |
|
} |
|
} |
|
#else // NO NEON and NOT GNUC |
|
HammingLUT lut; |
|
result = lut(reinterpret_cast<const unsigned char*> (a), |
|
reinterpret_cast<const unsigned char*> (b), size); |
|
#endif |
|
return result; |
|
} |
|
}; |
|
|
|
template<typename T> |
|
struct Hamming2 |
|
{ |
|
typedef False is_kdtree_distance; |
|
typedef False is_vector_space_distance; |
|
|
|
typedef T ElementType; |
|
typedef int ResultType; |
|
|
|
/** This is popcount_3() from: |
|
* http://en.wikipedia.org/wiki/Hamming_weight */ |
|
unsigned int popcnt32(uint32_t n) const |
|
{ |
|
n -= ((n >> 1) & 0x55555555); |
|
n = (n & 0x33333333) + ((n >> 2) & 0x33333333); |
|
return (((n + (n >> 4))& 0xF0F0F0F)* 0x1010101) >> 24; |
|
} |
|
|
|
#ifdef FLANN_PLATFORM_64_BIT |
|
unsigned int popcnt64(uint64_t n) const |
|
{ |
|
n -= ((n >> 1) & 0x5555555555555555); |
|
n = (n & 0x3333333333333333) + ((n >> 2) & 0x3333333333333333); |
|
return (((n + (n >> 4))& 0x0f0f0f0f0f0f0f0f)* 0x0101010101010101) >> 56; |
|
} |
|
#endif |
|
|
|
template <typename Iterator1, typename Iterator2> |
|
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const |
|
{ |
|
#ifdef FLANN_PLATFORM_64_BIT |
|
const uint64_t* pa = reinterpret_cast<const uint64_t*>(a); |
|
const uint64_t* pb = reinterpret_cast<const uint64_t*>(b); |
|
ResultType result = 0; |
|
size /= (sizeof(uint64_t)/sizeof(unsigned char)); |
|
for(size_t i = 0; i < size; ++i ) { |
|
result += popcnt64(*pa ^ *pb); |
|
++pa; |
|
++pb; |
|
} |
|
#else |
|
const uint32_t* pa = reinterpret_cast<const uint32_t*>(a); |
|
const uint32_t* pb = reinterpret_cast<const uint32_t*>(b); |
|
ResultType result = 0; |
|
size /= (sizeof(uint32_t)/sizeof(unsigned char)); |
|
for(size_t i = 0; i < size; ++i ) { |
|
result += popcnt32(*pa ^ *pb); |
|
++pa; |
|
++pb; |
|
} |
|
#endif |
|
return result; |
|
} |
|
}; |
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
template<class T> |
|
struct HistIntersectionDistance |
|
{ |
|
typedef True is_kdtree_distance; |
|
typedef True is_vector_space_distance; |
|
|
|
typedef T ElementType; |
|
typedef typename Accumulator<T>::Type ResultType; |
|
|
|
/** |
|
* Compute the histogram intersection distance |
|
*/ |
|
template <typename Iterator1, typename Iterator2> |
|
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const |
|
{ |
|
ResultType result = ResultType(); |
|
ResultType min0, min1, min2, min3; |
|
Iterator1 last = a + size; |
|
Iterator1 lastgroup = last - 3; |
|
|
|
/* Process 4 items with each loop for efficiency. */ |
|
while (a < lastgroup) { |
|
min0 = (ResultType)(a[0] < b[0] ? a[0] : b[0]); |
|
min1 = (ResultType)(a[1] < b[1] ? a[1] : b[1]); |
|
min2 = (ResultType)(a[2] < b[2] ? a[2] : b[2]); |
|
min3 = (ResultType)(a[3] < b[3] ? a[3] : b[3]); |
|
result += min0 + min1 + min2 + min3; |
|
a += 4; |
|
b += 4; |
|
if ((worst_dist>0)&&(result>worst_dist)) { |
|
return result; |
|
} |
|
} |
|
/* Process last 0-3 pixels. Not needed for standard vector lengths. */ |
|
while (a < last) { |
|
min0 = (ResultType)(*a < *b ? *a : *b); |
|
result += min0; |
|
++a; |
|
++b; |
|
} |
|
return result; |
|
} |
|
|
|
/** |
|
* Partial distance, used by the kd-tree. |
|
*/ |
|
template <typename U, typename V> |
|
inline ResultType accum_dist(const U& a, const V& b, int) const |
|
{ |
|
return a<b ? a : b; |
|
} |
|
}; |
|
|
|
|
|
|
|
template<class T> |
|
struct HellingerDistance |
|
{ |
|
typedef True is_kdtree_distance; |
|
typedef True is_vector_space_distance; |
|
|
|
typedef T ElementType; |
|
typedef typename Accumulator<T>::Type ResultType; |
|
|
|
/** |
|
* Compute the Hellinger distance |
|
*/ |
|
template <typename Iterator1, typename Iterator2> |
|
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const |
|
{ |
|
ResultType result = ResultType(); |
|
ResultType diff0, diff1, diff2, diff3; |
|
Iterator1 last = a + size; |
|
Iterator1 lastgroup = last - 3; |
|
|
|
/* Process 4 items with each loop for efficiency. */ |
|
while (a < lastgroup) { |
|
diff0 = sqrt(static_cast<ResultType>(a[0])) - sqrt(static_cast<ResultType>(b[0])); |
|
diff1 = sqrt(static_cast<ResultType>(a[1])) - sqrt(static_cast<ResultType>(b[1])); |
|
diff2 = sqrt(static_cast<ResultType>(a[2])) - sqrt(static_cast<ResultType>(b[2])); |
|
diff3 = sqrt(static_cast<ResultType>(a[3])) - sqrt(static_cast<ResultType>(b[3])); |
|
result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3; |
|
a += 4; |
|
b += 4; |
|
} |
|
while (a < last) { |
|
diff0 = sqrt(static_cast<ResultType>(*a++)) - sqrt(static_cast<ResultType>(*b++)); |
|
result += diff0 * diff0; |
|
} |
|
return result; |
|
} |
|
|
|
/** |
|
* Partial distance, used by the kd-tree. |
|
*/ |
|
template <typename U, typename V> |
|
inline ResultType accum_dist(const U& a, const V& b, int) const |
|
{ |
|
ResultType diff = sqrt(static_cast<ResultType>(a)) - sqrt(static_cast<ResultType>(b)); |
|
return diff * diff; |
|
} |
|
}; |
|
|
|
|
|
template<class T> |
|
struct ChiSquareDistance |
|
{ |
|
typedef True is_kdtree_distance; |
|
typedef True is_vector_space_distance; |
|
|
|
typedef T ElementType; |
|
typedef typename Accumulator<T>::Type ResultType; |
|
|
|
/** |
|
* Compute the chi-square distance |
|
*/ |
|
template <typename Iterator1, typename Iterator2> |
|
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const |
|
{ |
|
ResultType result = ResultType(); |
|
ResultType sum, diff; |
|
Iterator1 last = a + size; |
|
|
|
while (a < last) { |
|
sum = (ResultType)(*a + *b); |
|
if (sum>0) { |
|
diff = (ResultType)(*a - *b); |
|
result += diff*diff/sum; |
|
} |
|
++a; |
|
++b; |
|
|
|
if ((worst_dist>0)&&(result>worst_dist)) { |
|
return result; |
|
} |
|
} |
|
return result; |
|
} |
|
|
|
/** |
|
* Partial distance, used by the kd-tree. |
|
*/ |
|
template <typename U, typename V> |
|
inline ResultType accum_dist(const U& a, const V& b, int) const |
|
{ |
|
ResultType result = ResultType(); |
|
ResultType sum, diff; |
|
|
|
sum = (ResultType)(a+b); |
|
if (sum>0) { |
|
diff = (ResultType)(a-b); |
|
result = diff*diff/sum; |
|
} |
|
return result; |
|
} |
|
}; |
|
|
|
|
|
template<class T> |
|
struct KL_Divergence |
|
{ |
|
typedef True is_kdtree_distance; |
|
typedef True is_vector_space_distance; |
|
|
|
typedef T ElementType; |
|
typedef typename Accumulator<T>::Type ResultType; |
|
|
|
/** |
|
* Compute the Kullback-Leibler divergence |
|
*/ |
|
template <typename Iterator1, typename Iterator2> |
|
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const |
|
{ |
|
ResultType result = ResultType(); |
|
Iterator1 last = a + size; |
|
|
|
while (a < last) { |
|
if (* b != 0) { |
|
ResultType ratio = (ResultType)(*a / *b); |
|
if (ratio>0) { |
|
result += *a * log(ratio); |
|
} |
|
} |
|
++a; |
|
++b; |
|
|
|
if ((worst_dist>0)&&(result>worst_dist)) { |
|
return result; |
|
} |
|
} |
|
return result; |
|
} |
|
|
|
/** |
|
* Partial distance, used by the kd-tree. |
|
*/ |
|
template <typename U, typename V> |
|
inline ResultType accum_dist(const U& a, const V& b, int) const |
|
{ |
|
ResultType result = ResultType(); |
|
if( *b != 0 ) { |
|
ResultType ratio = (ResultType)(a / b); |
|
if (ratio>0) { |
|
result = a * log(ratio); |
|
} |
|
} |
|
return result; |
|
} |
|
}; |
|
|
|
|
|
|
|
/* |
|
* This is a "zero iterator". It basically behaves like a zero filled |
|
* array to all algorithms that use arrays as iterators (STL style). |
|
* It's useful when there's a need to compute the distance between feature |
|
* and origin it and allows for better compiler optimisation than using a |
|
* zero-filled array. |
|
*/ |
|
template <typename T> |
|
struct ZeroIterator |
|
{ |
|
|
|
T operator*() |
|
{ |
|
return 0; |
|
} |
|
|
|
T operator[](int) |
|
{ |
|
return 0; |
|
} |
|
|
|
const ZeroIterator<T>& operator ++() |
|
{ |
|
return *this; |
|
} |
|
|
|
ZeroIterator<T> operator ++(int) |
|
{ |
|
return *this; |
|
} |
|
|
|
ZeroIterator<T>& operator+=(int) |
|
{ |
|
return *this; |
|
} |
|
|
|
}; |
|
|
|
|
|
/* |
|
* Depending on processed distances, some of them are already squared (e.g. L2) |
|
* and some are not (e.g.Hamming). In KMeans++ for instance we want to be sure |
|
* we are working on ^2 distances, thus following templates to ensure that. |
|
*/ |
|
template <typename Distance, typename ElementType> |
|
struct squareDistance |
|
{ |
|
typedef typename Distance::ResultType ResultType; |
|
ResultType operator()( ResultType dist ) { return dist*dist; } |
|
}; |
|
|
|
|
|
template <typename ElementType> |
|
struct squareDistance<L2_Simple<ElementType>, ElementType> |
|
{ |
|
typedef typename L2_Simple<ElementType>::ResultType ResultType; |
|
ResultType operator()( ResultType dist ) { return dist; } |
|
}; |
|
|
|
template <typename ElementType> |
|
struct squareDistance<L2<ElementType>, ElementType> |
|
{ |
|
typedef typename L2<ElementType>::ResultType ResultType; |
|
ResultType operator()( ResultType dist ) { return dist; } |
|
}; |
|
|
|
|
|
template <typename ElementType> |
|
struct squareDistance<MinkowskiDistance<ElementType>, ElementType> |
|
{ |
|
typedef typename MinkowskiDistance<ElementType>::ResultType ResultType; |
|
ResultType operator()( ResultType dist ) { return dist; } |
|
}; |
|
|
|
template <typename ElementType> |
|
struct squareDistance<HellingerDistance<ElementType>, ElementType> |
|
{ |
|
typedef typename HellingerDistance<ElementType>::ResultType ResultType; |
|
ResultType operator()( ResultType dist ) { return dist; } |
|
}; |
|
|
|
template <typename ElementType> |
|
struct squareDistance<ChiSquareDistance<ElementType>, ElementType> |
|
{ |
|
typedef typename ChiSquareDistance<ElementType>::ResultType ResultType; |
|
ResultType operator()( ResultType dist ) { return dist; } |
|
}; |
|
|
|
|
|
template <typename Distance> |
|
typename Distance::ResultType ensureSquareDistance( typename Distance::ResultType dist ) |
|
{ |
|
typedef typename Distance::ElementType ElementType; |
|
|
|
squareDistance<Distance, ElementType> dummy; |
|
return dummy( dist ); |
|
} |
|
|
|
|
|
/* |
|
* ...and a template to ensure the user that he will process the normal distance, |
|
* and not squared distance, without losing processing time calling sqrt(ensureSquareDistance) |
|
* that will result in doing actually sqrt(dist*dist) for L1 distance for instance. |
|
*/ |
|
template <typename Distance, typename ElementType> |
|
struct simpleDistance |
|
{ |
|
typedef typename Distance::ResultType ResultType; |
|
ResultType operator()( ResultType dist ) { return dist; } |
|
}; |
|
|
|
|
|
template <typename ElementType> |
|
struct simpleDistance<L2_Simple<ElementType>, ElementType> |
|
{ |
|
typedef typename L2_Simple<ElementType>::ResultType ResultType; |
|
ResultType operator()( ResultType dist ) { return sqrt(dist); } |
|
}; |
|
|
|
template <typename ElementType> |
|
struct simpleDistance<L2<ElementType>, ElementType> |
|
{ |
|
typedef typename L2<ElementType>::ResultType ResultType; |
|
ResultType operator()( ResultType dist ) { return sqrt(dist); } |
|
}; |
|
|
|
|
|
template <typename ElementType> |
|
struct simpleDistance<MinkowskiDistance<ElementType>, ElementType> |
|
{ |
|
typedef typename MinkowskiDistance<ElementType>::ResultType ResultType; |
|
ResultType operator()( ResultType dist ) { return sqrt(dist); } |
|
}; |
|
|
|
template <typename ElementType> |
|
struct simpleDistance<HellingerDistance<ElementType>, ElementType> |
|
{ |
|
typedef typename HellingerDistance<ElementType>::ResultType ResultType; |
|
ResultType operator()( ResultType dist ) { return sqrt(dist); } |
|
}; |
|
|
|
template <typename ElementType> |
|
struct simpleDistance<ChiSquareDistance<ElementType>, ElementType> |
|
{ |
|
typedef typename ChiSquareDistance<ElementType>::ResultType ResultType; |
|
ResultType operator()( ResultType dist ) { return sqrt(dist); } |
|
}; |
|
|
|
|
|
template <typename Distance> |
|
typename Distance::ResultType ensureSimpleDistance( typename Distance::ResultType dist ) |
|
{ |
|
typedef typename Distance::ElementType ElementType; |
|
|
|
simpleDistance<Distance, ElementType> dummy; |
|
return dummy( dist ); |
|
} |
|
|
|
} |
|
|
|
#endif //OPENCV_FLANN_DIST_H_
|
|
|