mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
160 lines
5.4 KiB
160 lines
5.4 KiB
#!/usr/bin/env python |
|
|
|
''' |
|
Feature homography |
|
================== |
|
|
|
Example of using features2d framework for interactive video homography matching. |
|
ORB features and FLANN matcher are used. The actual tracking is implemented by |
|
PlaneTracker class in plane_tracker.py |
|
''' |
|
|
|
# Python 2/3 compatibility |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
import cv2 |
|
import sys |
|
PY3 = sys.version_info[0] == 3 |
|
|
|
if PY3: |
|
xrange = range |
|
|
|
# local modules |
|
from tst_scene_render import TestSceneRender |
|
|
|
def intersectionRate(s1, s2): |
|
|
|
x1, y1, x2, y2 = s1 |
|
s1 = np.array([[x1, y1], [x2,y1], [x2, y2], [x1, y2]]) |
|
|
|
area, intersection = cv2.intersectConvexConvex(s1, np.array(s2)) |
|
return 2 * area / (cv2.contourArea(s1) + cv2.contourArea(np.array(s2))) |
|
|
|
from tests_common import NewOpenCVTests |
|
|
|
class feature_homography_test(NewOpenCVTests): |
|
|
|
render = None |
|
tracker = None |
|
framesCounter = 0 |
|
frame = None |
|
|
|
def test_feature_homography(self): |
|
|
|
self.render = TestSceneRender(self.get_sample('samples/python2/data/graf1.png'), |
|
self.get_sample('samples/c/box.png'), noise = 0.4, speed = 0.5) |
|
self.frame = self.render.getNextFrame() |
|
self.tracker = PlaneTracker() |
|
self.tracker.clear() |
|
self.tracker.add_target(self.frame, self.render.getCurrentRect()) |
|
|
|
while self.framesCounter < 100: |
|
self.framesCounter += 1 |
|
tracked = self.tracker.track(self.frame) |
|
if len(tracked) > 0: |
|
tracked = tracked[0] |
|
self.assertGreater(intersectionRate(self.render.getCurrentRect(), np.int32(tracked.quad)), 0.6) |
|
else: |
|
self.assertEqual(0, 1, 'Tracking error') |
|
self.frame = self.render.getNextFrame() |
|
|
|
|
|
# built-in modules |
|
from collections import namedtuple |
|
|
|
FLANN_INDEX_KDTREE = 1 |
|
FLANN_INDEX_LSH = 6 |
|
flann_params= dict(algorithm = FLANN_INDEX_LSH, |
|
table_number = 6, # 12 |
|
key_size = 12, # 20 |
|
multi_probe_level = 1) #2 |
|
|
|
MIN_MATCH_COUNT = 10 |
|
|
|
''' |
|
image - image to track |
|
rect - tracked rectangle (x1, y1, x2, y2) |
|
keypoints - keypoints detected inside rect |
|
descrs - their descriptors |
|
data - some user-provided data |
|
''' |
|
PlanarTarget = namedtuple('PlaneTarget', 'image, rect, keypoints, descrs, data') |
|
|
|
''' |
|
target - reference to PlanarTarget |
|
p0 - matched points coords in target image |
|
p1 - matched points coords in input frame |
|
H - homography matrix from p0 to p1 |
|
quad - target bounary quad in input frame |
|
''' |
|
TrackedTarget = namedtuple('TrackedTarget', 'target, p0, p1, H, quad') |
|
|
|
class PlaneTracker: |
|
def __init__(self): |
|
self.detector = cv2.ORB( nfeatures = 1000 ) |
|
self.matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329) |
|
self.targets = [] |
|
self.frame_points = [] |
|
|
|
def add_target(self, image, rect, data=None): |
|
'''Add a new tracking target.''' |
|
x0, y0, x1, y1 = rect |
|
raw_points, raw_descrs = self.detect_features(image) |
|
points, descs = [], [] |
|
for kp, desc in zip(raw_points, raw_descrs): |
|
x, y = kp.pt |
|
if x0 <= x <= x1 and y0 <= y <= y1: |
|
points.append(kp) |
|
descs.append(desc) |
|
descs = np.uint8(descs) |
|
self.matcher.add([descs]) |
|
target = PlanarTarget(image = image, rect=rect, keypoints = points, descrs=descs, data=data) |
|
self.targets.append(target) |
|
|
|
def clear(self): |
|
'''Remove all targets''' |
|
self.targets = [] |
|
self.matcher.clear() |
|
|
|
def track(self, frame): |
|
'''Returns a list of detected TrackedTarget objects''' |
|
self.frame_points, frame_descrs = self.detect_features(frame) |
|
if len(self.frame_points) < MIN_MATCH_COUNT: |
|
return [] |
|
matches = self.matcher.knnMatch(frame_descrs, k = 2) |
|
matches = [m[0] for m in matches if len(m) == 2 and m[0].distance < m[1].distance * 0.75] |
|
if len(matches) < MIN_MATCH_COUNT: |
|
return [] |
|
matches_by_id = [[] for _ in xrange(len(self.targets))] |
|
for m in matches: |
|
matches_by_id[m.imgIdx].append(m) |
|
tracked = [] |
|
for imgIdx, matches in enumerate(matches_by_id): |
|
if len(matches) < MIN_MATCH_COUNT: |
|
continue |
|
target = self.targets[imgIdx] |
|
p0 = [target.keypoints[m.trainIdx].pt for m in matches] |
|
p1 = [self.frame_points[m.queryIdx].pt for m in matches] |
|
p0, p1 = np.float32((p0, p1)) |
|
H, status = cv2.findHomography(p0, p1, cv2.RANSAC, 3.0) |
|
status = status.ravel() != 0 |
|
if status.sum() < MIN_MATCH_COUNT: |
|
continue |
|
p0, p1 = p0[status], p1[status] |
|
|
|
x0, y0, x1, y1 = target.rect |
|
quad = np.float32([[x0, y0], [x1, y0], [x1, y1], [x0, y1]]) |
|
quad = cv2.perspectiveTransform(quad.reshape(1, -1, 2), H).reshape(-1, 2) |
|
|
|
track = TrackedTarget(target=target, p0=p0, p1=p1, H=H, quad=quad) |
|
tracked.append(track) |
|
tracked.sort(key = lambda t: len(t.p0), reverse=True) |
|
return tracked |
|
|
|
def detect_features(self, frame): |
|
'''detect_features(self, frame) -> keypoints, descrs''' |
|
keypoints, descrs = self.detector.detectAndCompute(frame, None) |
|
if descrs is None: # detectAndCompute returns descs=None if not keypoints found |
|
descrs = [] |
|
return keypoints, descrs |