mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
490 lines
16 KiB
490 lines
16 KiB
#pragma once |
|
|
|
namespace cv |
|
{ |
|
|
|
#define CC_CASCADE_PARAMS "cascadeParams" |
|
#define CC_STAGE_TYPE "stageType" |
|
#define CC_FEATURE_TYPE "featureType" |
|
#define CC_HEIGHT "height" |
|
#define CC_WIDTH "width" |
|
|
|
#define CC_STAGE_NUM "stageNum" |
|
#define CC_STAGES "stages" |
|
#define CC_STAGE_PARAMS "stageParams" |
|
|
|
#define CC_BOOST "BOOST" |
|
#define CC_MAX_DEPTH "maxDepth" |
|
#define CC_WEAK_COUNT "maxWeakCount" |
|
#define CC_STAGE_THRESHOLD "stageThreshold" |
|
#define CC_WEAK_CLASSIFIERS "weakClassifiers" |
|
#define CC_INTERNAL_NODES "internalNodes" |
|
#define CC_LEAF_VALUES "leafValues" |
|
|
|
#define CC_FEATURES "features" |
|
#define CC_FEATURE_PARAMS "featureParams" |
|
#define CC_MAX_CAT_COUNT "maxCatCount" |
|
|
|
#define CC_HAAR "HAAR" |
|
#define CC_RECTS "rects" |
|
#define CC_TILTED "tilted" |
|
|
|
#define CC_LBP "LBP" |
|
#define CC_RECT "rect" |
|
|
|
#define CC_HOG "HOG" |
|
|
|
#define CV_SUM_PTRS( p0, p1, p2, p3, sum, rect, step ) \ |
|
/* (x, y) */ \ |
|
(p0) = sum + (rect).x + (step) * (rect).y, \ |
|
/* (x + w, y) */ \ |
|
(p1) = sum + (rect).x + (rect).width + (step) * (rect).y, \ |
|
/* (x + w, y) */ \ |
|
(p2) = sum + (rect).x + (step) * ((rect).y + (rect).height), \ |
|
/* (x + w, y + h) */ \ |
|
(p3) = sum + (rect).x + (rect).width + (step) * ((rect).y + (rect).height) |
|
|
|
#define CV_TILTED_PTRS( p0, p1, p2, p3, tilted, rect, step ) \ |
|
/* (x, y) */ \ |
|
(p0) = tilted + (rect).x + (step) * (rect).y, \ |
|
/* (x - h, y + h) */ \ |
|
(p1) = tilted + (rect).x - (rect).height + (step) * ((rect).y + (rect).height), \ |
|
/* (x + w, y + w) */ \ |
|
(p2) = tilted + (rect).x + (rect).width + (step) * ((rect).y + (rect).width), \ |
|
/* (x + w - h, y + w + h) */ \ |
|
(p3) = tilted + (rect).x + (rect).width - (rect).height \ |
|
+ (step) * ((rect).y + (rect).width + (rect).height) |
|
|
|
#define CALC_SUM_(p0, p1, p2, p3, offset) \ |
|
((p0)[offset] - (p1)[offset] - (p2)[offset] + (p3)[offset]) |
|
|
|
#define CALC_SUM(rect,offset) CALC_SUM_((rect)[0], (rect)[1], (rect)[2], (rect)[3], offset) |
|
|
|
|
|
//---------------------------------------------- HaarEvaluator --------------------------------------- |
|
class HaarEvaluator : public FeatureEvaluator |
|
{ |
|
public: |
|
struct Feature |
|
{ |
|
Feature(); |
|
|
|
float calc( int offset ) const; |
|
void updatePtrs( const Mat& sum ); |
|
bool read( const FileNode& node ); |
|
|
|
bool tilted; |
|
|
|
enum { RECT_NUM = 3 }; |
|
|
|
struct |
|
{ |
|
Rect r; |
|
float weight; |
|
} rect[RECT_NUM]; |
|
|
|
const int* p[RECT_NUM][4]; |
|
}; |
|
|
|
HaarEvaluator(); |
|
virtual ~HaarEvaluator(); |
|
|
|
virtual bool read( const FileNode& node ); |
|
virtual Ptr<FeatureEvaluator> clone() const; |
|
virtual int getFeatureType() const { return FeatureEvaluator::HAAR; } |
|
|
|
virtual bool setImage(const Mat&, Size origWinSize); |
|
virtual bool setWindow(Point pt); |
|
|
|
double operator()(int featureIdx) const |
|
{ return featuresPtr[featureIdx].calc(offset) * varianceNormFactor; } |
|
virtual double calcOrd(int featureIdx) const |
|
{ return (*this)(featureIdx); } |
|
|
|
protected: |
|
Size origWinSize; |
|
Ptr<vector<Feature> > features; |
|
Feature* featuresPtr; // optimization |
|
bool hasTiltedFeatures; |
|
|
|
Mat sum0, sqsum0, tilted0; |
|
Mat sum, sqsum, tilted; |
|
|
|
Rect normrect; |
|
const int *p[4]; |
|
const double *pq[4]; |
|
|
|
int offset; |
|
double varianceNormFactor; |
|
}; |
|
|
|
inline HaarEvaluator::Feature :: Feature() |
|
{ |
|
tilted = false; |
|
rect[0].r = rect[1].r = rect[2].r = Rect(); |
|
rect[0].weight = rect[1].weight = rect[2].weight = 0; |
|
p[0][0] = p[0][1] = p[0][2] = p[0][3] = |
|
p[1][0] = p[1][1] = p[1][2] = p[1][3] = |
|
p[2][0] = p[2][1] = p[2][2] = p[2][3] = 0; |
|
} |
|
|
|
inline float HaarEvaluator::Feature :: calc( int _offset ) const |
|
{ |
|
float ret = rect[0].weight * CALC_SUM(p[0], _offset) + rect[1].weight * CALC_SUM(p[1], _offset); |
|
|
|
if( rect[2].weight != 0.0f ) |
|
ret += rect[2].weight * CALC_SUM(p[2], _offset); |
|
|
|
return ret; |
|
} |
|
|
|
inline void HaarEvaluator::Feature :: updatePtrs( const Mat& _sum ) |
|
{ |
|
const int* ptr = (const int*)_sum.data; |
|
size_t step = _sum.step/sizeof(ptr[0]); |
|
if (tilted) |
|
{ |
|
CV_TILTED_PTRS( p[0][0], p[0][1], p[0][2], p[0][3], ptr, rect[0].r, step ); |
|
CV_TILTED_PTRS( p[1][0], p[1][1], p[1][2], p[1][3], ptr, rect[1].r, step ); |
|
if (rect[2].weight) |
|
CV_TILTED_PTRS( p[2][0], p[2][1], p[2][2], p[2][3], ptr, rect[2].r, step ); |
|
} |
|
else |
|
{ |
|
CV_SUM_PTRS( p[0][0], p[0][1], p[0][2], p[0][3], ptr, rect[0].r, step ); |
|
CV_SUM_PTRS( p[1][0], p[1][1], p[1][2], p[1][3], ptr, rect[1].r, step ); |
|
if (rect[2].weight) |
|
CV_SUM_PTRS( p[2][0], p[2][1], p[2][2], p[2][3], ptr, rect[2].r, step ); |
|
} |
|
} |
|
|
|
|
|
//---------------------------------------------- LBPEvaluator ------------------------------------- |
|
|
|
class LBPEvaluator : public FeatureEvaluator |
|
{ |
|
public: |
|
struct Feature |
|
{ |
|
Feature(); |
|
Feature( int x, int y, int _block_w, int _block_h ) : |
|
rect(x, y, _block_w, _block_h) {} |
|
|
|
int calc( int offset ) const; |
|
void updatePtrs( const Mat& sum ); |
|
bool read(const FileNode& node ); |
|
|
|
Rect rect; // weight and height for block |
|
const int* p[16]; // fast |
|
}; |
|
|
|
LBPEvaluator(); |
|
virtual ~LBPEvaluator(); |
|
|
|
virtual bool read( const FileNode& node ); |
|
virtual Ptr<FeatureEvaluator> clone() const; |
|
virtual int getFeatureType() const { return FeatureEvaluator::LBP; } |
|
|
|
virtual bool setImage(const Mat& image, Size _origWinSize); |
|
virtual bool setWindow(Point pt); |
|
|
|
int operator()(int featureIdx) const |
|
{ return featuresPtr[featureIdx].calc(offset); } |
|
virtual int calcCat(int featureIdx) const |
|
{ return (*this)(featureIdx); } |
|
protected: |
|
Size origWinSize; |
|
Ptr<vector<Feature> > features; |
|
Feature* featuresPtr; // optimization |
|
Mat sum0, sum; |
|
Rect normrect; |
|
|
|
int offset; |
|
}; |
|
|
|
|
|
inline LBPEvaluator::Feature :: Feature() |
|
{ |
|
rect = Rect(); |
|
for( int i = 0; i < 16; i++ ) |
|
p[i] = 0; |
|
} |
|
|
|
inline int LBPEvaluator::Feature :: calc( int _offset ) const |
|
{ |
|
int cval = CALC_SUM_( p[5], p[6], p[9], p[10], _offset ); |
|
|
|
return (CALC_SUM_( p[0], p[1], p[4], p[5], _offset ) >= cval ? 128 : 0) | // 0 |
|
(CALC_SUM_( p[1], p[2], p[5], p[6], _offset ) >= cval ? 64 : 0) | // 1 |
|
(CALC_SUM_( p[2], p[3], p[6], p[7], _offset ) >= cval ? 32 : 0) | // 2 |
|
(CALC_SUM_( p[6], p[7], p[10], p[11], _offset ) >= cval ? 16 : 0) | // 5 |
|
(CALC_SUM_( p[10], p[11], p[14], p[15], _offset ) >= cval ? 8 : 0)| // 8 |
|
(CALC_SUM_( p[9], p[10], p[13], p[14], _offset ) >= cval ? 4 : 0)| // 7 |
|
(CALC_SUM_( p[8], p[9], p[12], p[13], _offset ) >= cval ? 2 : 0)| // 6 |
|
(CALC_SUM_( p[4], p[5], p[8], p[9], _offset ) >= cval ? 1 : 0); |
|
} |
|
|
|
inline void LBPEvaluator::Feature :: updatePtrs( const Mat& _sum ) |
|
{ |
|
const int* ptr = (const int*)_sum.data; |
|
size_t step = _sum.step/sizeof(ptr[0]); |
|
Rect tr = rect; |
|
CV_SUM_PTRS( p[0], p[1], p[4], p[5], ptr, tr, step ); |
|
tr.x += 2*rect.width; |
|
CV_SUM_PTRS( p[2], p[3], p[6], p[7], ptr, tr, step ); |
|
tr.y += 2*rect.height; |
|
CV_SUM_PTRS( p[10], p[11], p[14], p[15], ptr, tr, step ); |
|
tr.x -= 2*rect.width; |
|
CV_SUM_PTRS( p[8], p[9], p[12], p[13], ptr, tr, step ); |
|
} |
|
|
|
//---------------------------------------------- HOGEvaluator ------------------------------------------- |
|
|
|
class HOGEvaluator : public FeatureEvaluator |
|
{ |
|
public: |
|
struct Feature |
|
{ |
|
Feature(); |
|
float calc( int offset ) const; |
|
void updatePtrs( const vector<Mat>& _hist, const Mat &_normSum ); |
|
bool read( const FileNode& node ); |
|
|
|
enum { CELL_NUM = 4, BIN_NUM = 9 }; |
|
|
|
Rect rect[CELL_NUM]; |
|
int featComponent; //component index from 0 to 35 |
|
const float* pF[4]; //for feature calculation |
|
const float* pN[4]; //for normalization calculation |
|
}; |
|
HOGEvaluator(); |
|
virtual ~HOGEvaluator(); |
|
virtual bool read( const FileNode& node ); |
|
virtual Ptr<FeatureEvaluator> clone() const; |
|
virtual int getFeatureType() const { return FeatureEvaluator::HOG; } |
|
virtual bool setImage( const Mat& image, Size winSize ); |
|
virtual bool setWindow( Point pt ); |
|
double operator()(int featureIdx) const |
|
{ |
|
return featuresPtr[featureIdx].calc(offset); |
|
} |
|
virtual double calcOrd( int featureIdx ) const |
|
{ |
|
return (*this)(featureIdx); |
|
} |
|
|
|
private: |
|
virtual void integralHistogram( const Mat& srcImage, vector<Mat> &histogram, Mat &norm, int nbins ) const; |
|
|
|
Size origWinSize; |
|
Ptr<vector<Feature> > features; |
|
Feature* featuresPtr; |
|
vector<Mat> hist; |
|
Mat normSum; |
|
int offset; |
|
}; |
|
|
|
inline HOGEvaluator::Feature :: Feature() |
|
{ |
|
rect[0] = rect[1] = rect[2] = rect[3] = Rect(); |
|
pF[0] = pF[1] = pF[2] = pF[3] = 0; |
|
pN[0] = pN[1] = pN[2] = pN[3] = 0; |
|
featComponent = 0; |
|
} |
|
|
|
inline float HOGEvaluator::Feature :: calc( int _offset ) const |
|
{ |
|
float res = CALC_SUM(pF, _offset); |
|
float normFactor = CALC_SUM(pN, _offset); |
|
res = (res > 0.001f) ? (res / ( normFactor + 0.001f) ) : 0.f; |
|
return res; |
|
} |
|
|
|
inline void HOGEvaluator::Feature :: updatePtrs( const vector<Mat> &_hist, const Mat &_normSum ) |
|
{ |
|
int binIdx = featComponent % BIN_NUM; |
|
int cellIdx = featComponent / BIN_NUM; |
|
Rect normRect = Rect( rect[0].x, rect[0].y, 2*rect[0].width, 2*rect[0].height ); |
|
|
|
const float* featBuf = (const float*)_hist[binIdx].data; |
|
size_t featStep = _hist[0].step / sizeof(featBuf[0]); |
|
|
|
const float* normBuf = (const float*)_normSum.data; |
|
size_t normStep = _normSum.step / sizeof(normBuf[0]); |
|
|
|
CV_SUM_PTRS( pF[0], pF[1], pF[2], pF[3], featBuf, rect[cellIdx], featStep ); |
|
CV_SUM_PTRS( pN[0], pN[1], pN[2], pN[3], normBuf, normRect, normStep ); |
|
} |
|
|
|
|
|
|
|
|
|
//---------------------------------------------- predictor functions ------------------------------------- |
|
|
|
template<class FEval> |
|
inline int predictOrdered( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_featureEvaluator, double& sum ) |
|
{ |
|
int nstages = (int)cascade.data.stages.size(); |
|
int nodeOfs = 0, leafOfs = 0; |
|
FEval& featureEvaluator = (FEval&)*_featureEvaluator; |
|
float* cascadeLeaves = &cascade.data.leaves[0]; |
|
CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0]; |
|
CascadeClassifier::Data::DTree* cascadeWeaks = &cascade.data.classifiers[0]; |
|
CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0]; |
|
|
|
for( int si = 0; si < nstages; si++ ) |
|
{ |
|
CascadeClassifier::Data::Stage& stage = cascadeStages[si]; |
|
int wi, ntrees = stage.ntrees; |
|
sum = 0; |
|
|
|
for( wi = 0; wi < ntrees; wi++ ) |
|
{ |
|
CascadeClassifier::Data::DTree& weak = cascadeWeaks[stage.first + wi]; |
|
int idx = 0, root = nodeOfs; |
|
|
|
do |
|
{ |
|
CascadeClassifier::Data::DTreeNode& node = cascadeNodes[root + idx]; |
|
double val = featureEvaluator(node.featureIdx); |
|
idx = val < node.threshold ? node.left : node.right; |
|
} |
|
while( idx > 0 ); |
|
sum += cascadeLeaves[leafOfs - idx]; |
|
nodeOfs += weak.nodeCount; |
|
leafOfs += weak.nodeCount + 1; |
|
} |
|
if( sum < stage.threshold ) |
|
return -si; |
|
} |
|
return 1; |
|
} |
|
|
|
template<class FEval> |
|
inline int predictCategorical( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_featureEvaluator, double& sum ) |
|
{ |
|
int nstages = (int)cascade.data.stages.size(); |
|
int nodeOfs = 0, leafOfs = 0; |
|
FEval& featureEvaluator = (FEval&)*_featureEvaluator; |
|
size_t subsetSize = (cascade.data.ncategories + 31)/32; |
|
int* cascadeSubsets = &cascade.data.subsets[0]; |
|
float* cascadeLeaves = &cascade.data.leaves[0]; |
|
CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0]; |
|
CascadeClassifier::Data::DTree* cascadeWeaks = &cascade.data.classifiers[0]; |
|
CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0]; |
|
|
|
for(int si = 0; si < nstages; si++ ) |
|
{ |
|
CascadeClassifier::Data::Stage& stage = cascadeStages[si]; |
|
int wi, ntrees = stage.ntrees; |
|
sum = 0; |
|
|
|
for( wi = 0; wi < ntrees; wi++ ) |
|
{ |
|
CascadeClassifier::Data::DTree& weak = cascadeWeaks[stage.first + wi]; |
|
int idx = 0, root = nodeOfs; |
|
do |
|
{ |
|
CascadeClassifier::Data::DTreeNode& node = cascadeNodes[root + idx]; |
|
int c = featureEvaluator(node.featureIdx); |
|
const int* subset = &cascadeSubsets[(root + idx)*subsetSize]; |
|
idx = (subset[c>>5] & (1 << (c & 31))) ? node.left : node.right; |
|
} |
|
while( idx > 0 ); |
|
sum += cascadeLeaves[leafOfs - idx]; |
|
nodeOfs += weak.nodeCount; |
|
leafOfs += weak.nodeCount + 1; |
|
} |
|
if( sum < stage.threshold ) |
|
return -si; |
|
} |
|
return 1; |
|
} |
|
|
|
template<class FEval> |
|
inline int predictOrderedStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_featureEvaluator, double& sum ) |
|
{ |
|
int nodeOfs = 0, leafOfs = 0; |
|
FEval& featureEvaluator = (FEval&)*_featureEvaluator; |
|
float* cascadeLeaves = &cascade.data.leaves[0]; |
|
CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0]; |
|
CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0]; |
|
|
|
int nstages = (int)cascade.data.stages.size(); |
|
for( int stageIdx = 0; stageIdx < nstages; stageIdx++ ) |
|
{ |
|
CascadeClassifier::Data::Stage& stage = cascadeStages[stageIdx]; |
|
sum = 0.0; |
|
|
|
int ntrees = stage.ntrees; |
|
for( int i = 0; i < ntrees; i++, nodeOfs++, leafOfs+= 2 ) |
|
{ |
|
CascadeClassifier::Data::DTreeNode& node = cascadeNodes[nodeOfs]; |
|
double value = featureEvaluator(node.featureIdx); |
|
sum += cascadeLeaves[ value < node.threshold ? leafOfs : leafOfs + 1 ]; |
|
} |
|
|
|
if( sum < stage.threshold ) |
|
return -stageIdx; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
template<class FEval> |
|
inline int predictCategoricalStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_featureEvaluator, double& sum ) |
|
{ |
|
int nstages = (int)cascade.data.stages.size(); |
|
int nodeOfs = 0, leafOfs = 0; |
|
FEval& featureEvaluator = (FEval&)*_featureEvaluator; |
|
size_t subsetSize = (cascade.data.ncategories + 31)/32; |
|
int* cascadeSubsets = &cascade.data.subsets[0]; |
|
float* cascadeLeaves = &cascade.data.leaves[0]; |
|
CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0]; |
|
CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0]; |
|
|
|
#ifdef HAVE_TEGRA_OPTIMIZATION |
|
float tmp = 0; // float accumulator -- float operations are quicker |
|
#endif |
|
for( int si = 0; si < nstages; si++ ) |
|
{ |
|
CascadeClassifier::Data::Stage& stage = cascadeStages[si]; |
|
int wi, ntrees = stage.ntrees; |
|
#ifdef HAVE_TEGRA_OPTIMIZATION |
|
tmp = 0; |
|
#else |
|
sum = 0; |
|
#endif |
|
|
|
for( wi = 0; wi < ntrees; wi++ ) |
|
{ |
|
CascadeClassifier::Data::DTreeNode& node = cascadeNodes[nodeOfs]; |
|
int c = featureEvaluator(node.featureIdx); |
|
const int* subset = &cascadeSubsets[nodeOfs*subsetSize]; |
|
#ifdef HAVE_TEGRA_OPTIMIZATION |
|
tmp += cascadeLeaves[ subset[c>>5] & (1 << (c & 31)) ? leafOfs : leafOfs+1]; |
|
#else |
|
sum += cascadeLeaves[ subset[c>>5] & (1 << (c & 31)) ? leafOfs : leafOfs+1]; |
|
#endif |
|
nodeOfs++; |
|
leafOfs += 2; |
|
} |
|
#ifdef HAVE_TEGRA_OPTIMIZATION |
|
if( tmp < stage.threshold ) { |
|
sum = (double)tmp; |
|
return -si; |
|
} |
|
#else |
|
if( sum < stage.threshold ) |
|
return -si; |
|
#endif |
|
} |
|
|
|
#ifdef HAVE_TEGRA_OPTIMIZATION |
|
sum = (double)tmp; |
|
#endif |
|
|
|
return 1; |
|
} |
|
} |
|
|
|
|