Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
192 lines
6.9 KiB
192 lines
6.9 KiB
/*M /////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "../precomp.hpp" |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
#include <opencv2/dnn/all_layers.hpp> |
|
#include <iostream> |
|
|
|
#ifdef HAVE_OPENCL |
|
#include "opencl_kernels_dnn.hpp" |
|
#endif |
|
|
|
namespace cv |
|
{ |
|
namespace dnn |
|
{ |
|
|
|
class ReorgLayerImpl CV_FINAL : public ReorgLayer |
|
{ |
|
int reorgStride; |
|
public: |
|
|
|
ReorgLayerImpl(const LayerParams& params) |
|
{ |
|
setParamsFrom(params); |
|
|
|
reorgStride = params.get<int>("reorg_stride", 2); |
|
CV_Assert(reorgStride > 0); |
|
} |
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const CV_OVERRIDE |
|
{ |
|
CV_Assert(inputs.size() > 0); |
|
outputs = std::vector<MatShape>(inputs.size(), shape( |
|
inputs[0][0], |
|
inputs[0][1] * reorgStride * reorgStride, |
|
inputs[0][2] / reorgStride, |
|
inputs[0][3] / reorgStride)); |
|
|
|
CV_Assert(outputs[0][0] > 0 && outputs[0][1] > 0 && outputs[0][2] > 0 && outputs[0][3] > 0); |
|
CV_Assert(total(outputs[0]) == total(inputs[0])); |
|
|
|
return false; |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals) |
|
{ |
|
std::vector<UMat> inputs; |
|
std::vector<UMat> outputs; |
|
|
|
bool use_half = (inps.depth() == CV_16S); |
|
inps.getUMatVector(inputs); |
|
outs.getUMatVector(outputs); |
|
String buildopt= format("-DDtype=%s ", use_half ? "half" : "float"); |
|
|
|
for (size_t i = 0; i < inputs.size(); i++) |
|
{ |
|
ocl::Kernel kernel("reorg", ocl::dnn::reorg_oclsrc, buildopt); |
|
if (kernel.empty()) |
|
return false; |
|
|
|
UMat& srcBlob = inputs[i]; |
|
UMat& dstBlob = outputs[0]; |
|
int channels = srcBlob.size[1]; |
|
int height = srcBlob.size[2]; |
|
int width = srcBlob.size[3]; |
|
size_t nthreads = channels * height * width; |
|
|
|
kernel.set(0, (int)nthreads); |
|
kernel.set(1, ocl::KernelArg::PtrReadOnly(srcBlob)); |
|
kernel.set(2, (int)channels); |
|
kernel.set(3, (int)height); |
|
kernel.set(4, (int)width); |
|
kernel.set(5, (int)reorgStride); |
|
kernel.set(6, ocl::KernelArg::PtrWriteOnly(dstBlob)); |
|
|
|
if (!kernel.run(1, &nthreads, NULL, false)) |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
#endif |
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) && |
|
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()), |
|
forward_ocl(inputs_arr, outputs_arr, internals_arr)) |
|
|
|
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr); |
|
} |
|
|
|
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
for (size_t i = 0; i < inputs.size(); i++) |
|
{ |
|
Mat srcBlob = *inputs[i]; |
|
MatShape inputShape = shape(srcBlob), outShape = shape(outputs[i]); |
|
float *dstData = outputs[0].ptr<float>(); |
|
const float *srcData = srcBlob.ptr<float>(); |
|
|
|
int channels = inputShape[1], height = inputShape[2], width = inputShape[3]; |
|
|
|
int out_c = channels / (reorgStride*reorgStride); |
|
|
|
for (int k = 0; k < channels; ++k) { |
|
for (int j = 0; j < height; ++j) { |
|
for (int i = 0; i < width; ++i) { |
|
int out_index = i + width*(j + height*k); |
|
int c2 = k % out_c; |
|
int offset = k / out_c; |
|
int w2 = i*reorgStride + offset % reorgStride; |
|
int h2 = j*reorgStride + offset / reorgStride; |
|
int in_index = w2 + width*reorgStride*(h2 + height*reorgStride*c2); |
|
dstData[out_index] = srcData[in_index]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs, |
|
const std::vector<MatShape> &outputs) const CV_OVERRIDE |
|
{ |
|
(void)outputs; // suppress unused variable warning |
|
|
|
int64 flops = 0; |
|
for(int i = 0; i < inputs.size(); i++) |
|
{ |
|
flops += 21*total(inputs[i]); |
|
} |
|
return flops; |
|
} |
|
}; |
|
|
|
Ptr<ReorgLayer> ReorgLayer::create(const LayerParams& params) |
|
{ |
|
return Ptr<ReorgLayer>(new ReorgLayerImpl(params)); |
|
} |
|
|
|
} // namespace dnn |
|
} // namespace cv
|
|
|