mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
119 lines
4.5 KiB
119 lines
4.5 KiB
#!/usr/bin/env python |
|
|
|
import numpy as np |
|
import cv2 as cv |
|
import os |
|
|
|
from tests_common import NewOpenCVTests |
|
|
|
|
|
class test_gapi_infer(NewOpenCVTests): |
|
|
|
def test_getAvailableTargets(self): |
|
targets = cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_OPENCV) |
|
self.assertTrue(cv.dnn.DNN_TARGET_CPU in targets) |
|
|
|
|
|
def test_age_gender_infer(self): |
|
|
|
# NB: Check IE |
|
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE): |
|
return |
|
|
|
root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013' |
|
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')]) |
|
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')]) |
|
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')]) |
|
device_id = 'CPU' |
|
img = cv.resize(cv.imread(img_path), (62,62)) |
|
|
|
# OpenCV DNN |
|
net = cv.dnn.readNetFromModelOptimizer(model_path, weights_path) |
|
net.setPreferableBackend(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE) |
|
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU) |
|
|
|
blob = cv.dnn.blobFromImage(img) |
|
|
|
net.setInput(blob) |
|
dnn_age, dnn_gender = net.forward(net.getUnconnectedOutLayersNames()) |
|
|
|
# OpenCV G-API |
|
g_in = cv.GMat() |
|
inputs = cv.GInferInputs() |
|
inputs.setInput('data', g_in) |
|
|
|
outputs = cv.gapi.infer("net", inputs) |
|
age_g = outputs.at("age_conv3") |
|
gender_g = outputs.at("prob") |
|
|
|
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(age_g, gender_g)) |
|
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id) |
|
|
|
gapi_age, gapi_gender = comp.apply(cv.gin(img), args=cv.compile_args(cv.gapi.networks(pp))) |
|
|
|
# Check |
|
self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF)) |
|
self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF)) |
|
|
|
|
|
def test_person_detection_retail_0013(self): |
|
# NB: Check IE |
|
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE): |
|
return |
|
|
|
root_path = '/omz_intel_models/intel/person-detection-retail-0013/FP32/person-detection-retail-0013' |
|
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')]) |
|
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')]) |
|
img_path = self.find_file('gpu/lbpcascade/er.png', [os.environ.get('OPENCV_TEST_DATA_PATH')]) |
|
device_id = 'CPU' |
|
img = cv.resize(cv.imread(img_path), (544, 320)) |
|
|
|
# OpenCV DNN |
|
net = cv.dnn.readNetFromModelOptimizer(model_path, weights_path) |
|
net.setPreferableBackend(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE) |
|
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU) |
|
|
|
blob = cv.dnn.blobFromImage(img) |
|
|
|
def parseSSD(detections, size): |
|
h, w = size |
|
bboxes = [] |
|
detections = detections.reshape(-1, 7) |
|
for sample_id, class_id, confidence, xmin, ymin, xmax, ymax in detections: |
|
if confidence >= 0.5: |
|
x = int(xmin * w) |
|
y = int(ymin * h) |
|
width = int(xmax * w - x) |
|
height = int(ymax * h - y) |
|
bboxes.append((x, y, width, height)) |
|
|
|
return bboxes |
|
|
|
net.setInput(blob) |
|
dnn_detections = net.forward() |
|
dnn_boxes = parseSSD(np.array(dnn_detections), img.shape[:2]) |
|
|
|
# OpenCV G-API |
|
g_in = cv.GMat() |
|
inputs = cv.GInferInputs() |
|
inputs.setInput('data', g_in) |
|
|
|
g_sz = cv.gapi.streaming.size(g_in) |
|
outputs = cv.gapi.infer("net", inputs) |
|
detections = outputs.at("detection_out") |
|
bboxes = cv.gapi.parseSSD(detections, g_sz, 0.5, False, False) |
|
|
|
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(bboxes)) |
|
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id) |
|
|
|
gapi_boxes = comp.apply(cv.gin(img.astype(np.float32)), |
|
args=cv.compile_args(cv.gapi.networks(pp))) |
|
|
|
# Comparison |
|
self.assertEqual(0.0, cv.norm(np.array(dnn_boxes).flatten(), |
|
np.array(gapi_boxes).flatten(), |
|
cv.NORM_INF)) |
|
|
|
|
|
if __name__ == '__main__': |
|
NewOpenCVTests.bootstrap()
|
|
|