Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

625 lines
23 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2018, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "../precomp.hpp"
#ifdef HAVE_PROTOBUF
#include <iostream>
#include <fstream>
#include <string>
#include <limits>
#include <algorithm>
#if defined(__GNUC__) && __GNUC__ >= 5
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsuggest-override"
#endif
#include "opencv-onnx.pb.h"
#if defined(__GNUC__) && __GNUC__ >= 5
#pragma GCC diagnostic pop
#endif
namespace cv {
namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN
class ONNXImporter
{
opencv_onnx::ModelProto model_proto;
struct LayerInfo {
int layerId;
int outputId;
LayerInfo(int _layerId, int _outputId) : layerId(_layerId), outputId(_outputId) {}
};
std::map<std::string, Mat> getGraphTensors(
const opencv_onnx::GraphProto& graph_proto);
Mat getBlob(const opencv_onnx::NodeProto& node_proto, const std::map<std::string, Mat>& constBlobs, int index);
LayerParams getLayerParams(const opencv_onnx::NodeProto& node_proto);
bool isCeilMode(const LayerParams& layerParams);
public:
ONNXImporter(const char *onnxFile)
{
std::fstream input(onnxFile, std::ios::in | std::ios::binary);
if (!model_proto.ParseFromIstream(&input))
CV_Error(Error::StsUnsupportedFormat, "Failed to parse onnx model");
}
void populateNet(Net dstNet);
};
inline void replaceLayerParam(LayerParams& layerParams, const String& oldKey, const String& newKey)
{
if (layerParams.has(oldKey)) {
layerParams.set(newKey, layerParams.get(oldKey));
layerParams.erase(oldKey);
}
}
void releaseONNXTensor(opencv_onnx::TensorProto& tensor_proto)
{
if (!tensor_proto.raw_data().empty()) {
delete tensor_proto.release_raw_data();
}
}
template<typename T1, typename T2>
void convertInt64ToInt32(const T1& src, T2& dst, int size)
{
for (int i = 0; i < size; i++) {
if (src[i] < std::numeric_limits<int32_t>::min() || src[i] > std::numeric_limits<int32_t>::max()) {
CV_Error(Error::StsOutOfRange, "Input is out of OpenCV 32S range");
}
dst[i] = saturate_cast<int32_t>(src[i]);
}
}
Mat getMatFromTensor(opencv_onnx::TensorProto& tensor_proto)
{
CV_Assert(!tensor_proto.raw_data().empty() || !tensor_proto.float_data().empty()
|| !tensor_proto.double_data().empty() || !tensor_proto.int64_data().empty());
opencv_onnx::TensorProto_DataType datatype = tensor_proto.data_type();
Mat blob;
std::vector<int> sizes;
for (int i = 0; i < tensor_proto.dims_size(); i++) {
sizes.push_back(tensor_proto.dims(i));
}
if (sizes.empty())
sizes.assign(1, 1);
if (datatype == opencv_onnx::TensorProto_DataType_FLOAT) {
if (!tensor_proto.float_data().empty()) {
const ::google::protobuf::RepeatedField<float> field = tensor_proto.float_data();
Mat(sizes, CV_32FC1, (void*)field.data()).copyTo(blob);
}
else {
char* val = const_cast<char*>(tensor_proto.raw_data().c_str());
Mat(sizes, CV_32FC1, val).copyTo(blob);
}
}
else if (datatype == opencv_onnx::TensorProto_DataType_DOUBLE)
{
const ::google::protobuf::RepeatedField<double> field = tensor_proto.double_data();
CV_Assert(!field.empty());
Mat(sizes, CV_64FC1, (void*)field.data()).convertTo(blob, CV_32FC1);
}
else if (datatype == opencv_onnx::TensorProto_DataType_INT64)
{
blob.create(sizes, CV_32SC1);
int32_t* dst = reinterpret_cast<int32_t*>(blob.data);
if (!tensor_proto.int64_data().empty()) {
::google::protobuf::RepeatedField< ::google::protobuf::int64> src = tensor_proto.int64_data();
convertInt64ToInt32(src, dst, blob.total());
}
else
{
char* val = const_cast<char*>(tensor_proto.raw_data().c_str());
int64_t* src = reinterpret_cast<int64_t*>(val);
convertInt64ToInt32(src, dst, blob.total());
}
}
else
CV_Error(Error::StsUnsupportedFormat, "Unsupported data type: " +
opencv_onnx::TensorProto_DataType_Name(datatype));
return blob;
}
std::map<std::string, Mat> ONNXImporter::getGraphTensors(
const opencv_onnx::GraphProto& graph_proto)
{
opencv_onnx::TensorProto tensor_proto;
std::map<std::string, Mat> layers_weights;
for (int i = 0; i < graph_proto.initializer_size(); i++)
{
tensor_proto = graph_proto.initializer(i);
Mat mat = getMatFromTensor(tensor_proto);
releaseONNXTensor(tensor_proto);
layers_weights.insert(std::make_pair(tensor_proto.name(), mat));
}
return layers_weights;
}
LayerParams ONNXImporter::getLayerParams(const opencv_onnx::NodeProto& node_proto)
{
LayerParams lp;
for(int i = 0; i < node_proto.attribute_size(); i++)
{
opencv_onnx::AttributeProto attribute_proto = node_proto.attribute(i);
std::string attribute_name = attribute_proto.name();
if(attribute_name == "kernel_shape")
{
CV_Assert(attribute_proto.ints_size() == 2);
lp.set("kernel_h", saturate_cast<int32_t>(attribute_proto.ints(0)));
lp.set("kernel_w", saturate_cast<int32_t>(attribute_proto.ints(1)));
}
else if(attribute_name == "strides")
{
CV_Assert(attribute_proto.ints_size() == 2);
lp.set("stride_h", saturate_cast<int32_t>(attribute_proto.ints(0)));
lp.set("stride_w", saturate_cast<int32_t>(attribute_proto.ints(1)));
}
else if(attribute_name == "pads")
{
if (node_proto.op_type() == "Pad")
{
// Padding layer.
// Paddings are in order begin0, begin1, .. beginN, end0, end1, ..., endN.
// We need to shuffle it to begin0, end0, begin1, end1, ...
CV_Assert(attribute_proto.ints_size() % 2 == 0);
const int dims = attribute_proto.ints_size() / 2;
std::vector<int32_t> paddings;
paddings.reserve(attribute_proto.ints_size());
for (int i = 0; i < dims; ++i)
{
paddings.push_back(attribute_proto.ints(i));
paddings.push_back(attribute_proto.ints(dims + i));
}
lp.set("paddings", DictValue::arrayInt(&paddings[0], paddings.size()));
}
else
{
// Convolution or pooling.
CV_Assert(attribute_proto.ints_size() == 4);
lp.set("pad_t", saturate_cast<int32_t>(attribute_proto.ints(0)));
lp.set("pad_l", saturate_cast<int32_t>(attribute_proto.ints(1)));
lp.set("pad_b", saturate_cast<int32_t>(attribute_proto.ints(2)));
lp.set("pad_r", saturate_cast<int32_t>(attribute_proto.ints(3)));
}
}
else if(attribute_name == "auto_pad")
{
if (attribute_proto.s() == "SAME_UPPER" || attribute_proto.s() == "SAME_LOWER") {
lp.set("pad_mode", "SAME");
}
else if (attribute_proto.s() == "VALID") {
lp.set("pad_mode", "VALID");
}
}
else if(attribute_name == "dilations")
{
CV_Assert(attribute_proto.ints_size() == 2);
lp.set("dilation_h", saturate_cast<int32_t>(attribute_proto.ints(0)));
lp.set("dilation_w", saturate_cast<int32_t>(attribute_proto.ints(1)));
}
else if (attribute_proto.has_i())
{
::google::protobuf::int64 src = attribute_proto.i();
if (src < std::numeric_limits<int32_t>::min() || src > std::numeric_limits<int32_t>::max())
CV_Error(Error::StsOutOfRange, "Input is out of OpenCV 32S range");
else
lp.set(attribute_name, saturate_cast<int32_t>(src));
}
else if (attribute_proto.has_f())
{
lp.set(attribute_name, attribute_proto.f());
}
else if (attribute_proto.has_s())
{
lp.set(attribute_name, attribute_proto.s());
}
else if (attribute_proto.floats_size() > 0)
{
lp.set(attribute_name, DictValue::arrayReal(
attribute_proto.floats().data(), attribute_proto.floats_size()));
}
else if (attribute_proto.ints_size() > 0)
{
const ::google::protobuf::RepeatedField< ::google::protobuf::int64> src = attribute_proto.ints();
std::vector<int32_t> dst(attribute_proto.ints_size());
convertInt64ToInt32(src, dst, attribute_proto.ints_size());
lp.set(attribute_proto.name(), DictValue::arrayInt(&dst[0], attribute_proto.ints_size()));
}
else if (attribute_proto.has_t())
{
opencv_onnx::TensorProto tensor = attribute_proto.t();
Mat blob = getMatFromTensor(tensor);
lp.blobs.push_back(blob);
}
else if (attribute_proto.has_g() || attribute_proto.strings_size() > 0 ||
attribute_proto.tensors_size() > 0 || attribute_proto.graphs_size() > 0)
{
CV_Error(Error::StsNotImplemented, "Unexpected attribute type");
}
else
CV_Error(Error::StsNotImplemented, "Unsupported attribute type");
}
return lp;
}
Mat ONNXImporter::getBlob(const opencv_onnx::NodeProto& node_proto,
const std::map<std::string, Mat>& constBlobs, int index)
{
CV_Assert(index < node_proto.input_size());
std::map<std::string, Mat>::const_iterator constBlob;
constBlob = constBlobs.find(node_proto.input(index));
if (constBlob == constBlobs.end()) {
CV_Error(Error::StsObjectNotFound,
"Blob " + node_proto.input(index) + " not found in const blobs");
}
return constBlob->second;
}
bool ONNXImporter::isCeilMode(const LayerParams& layerParams) {
if (!layerParams.has("pad_mode")) {
if (layerParams.has("pad_h")) {
return layerParams.get<int>("pad_h") != layerParams.get<int>("pad_b") ||
layerParams.get<int>("pad_w") != layerParams.get<int>("pad_r");
}
else
return false; // all pads == 0
}
return true;
}
void ONNXImporter::populateNet(Net dstNet)
{
CV_Assert(model_proto.has_graph());
opencv_onnx::GraphProto graph_proto = model_proto.graph();
std::map<std::string, Mat> constBlobs = getGraphTensors(graph_proto);
std::string framework_name;
if (model_proto.has_producer_name()) {
framework_name = model_proto.producer_name();
}
// create map with network inputs (without const blobs)
std::map<std::string, LayerInfo> layer_id;
std::map<std::string, LayerInfo>::iterator layerId;
// fill map: push layer name, layer id and output id
std::vector<String> netInputs;
for (int j = 0; j < graph_proto.input_size(); j++)
{
const std::string& name = graph_proto.input(j).name();
if (constBlobs.find(name) == constBlobs.end()) {
netInputs.push_back(name);
layer_id.insert(std::make_pair(name, LayerInfo(0, netInputs.size() - 1)));
}
}
dstNet.setInputsNames(netInputs);
int layersSize = graph_proto.node_size();
LayerParams layerParams;
opencv_onnx::NodeProto node_proto;
for(int i = 0; i < layersSize; i++)
{
node_proto = graph_proto.node(i);
layerParams = getLayerParams(node_proto);
CV_Assert(node_proto.output_size() >= 1);
layerParams.name = node_proto.output(0);
std::string layer_type = node_proto.op_type();
layerParams.type = layer_type;
if (layer_type == "MaxPool")
{
layerParams.type = "Pooling";
layerParams.set("pool", "MAX");
layerParams.set("ceil_mode", isCeilMode(layerParams));
}
else if (layer_type == "AveragePool")
{
layerParams.type = "Pooling";
layerParams.set("pool", "AVE");
layerParams.set("ceil_mode", isCeilMode(layerParams));
layerParams.set("ave_pool_padded_area", framework_name == "pytorch");
}
else if (layer_type == "GlobalAveragePool")
{
layerParams.type = "Pooling";
layerParams.set("pool", "AVE");
layerParams.set("global_pooling", true);
}
else if (layer_type == "Add" || layer_type == "Sum")
{
if (layer_id.find(node_proto.input(1)) == layer_id.end())
{
Mat blob = getBlob(node_proto, constBlobs, 1);
blob = blob.reshape(1, 1);
if (blob.total() == 1) {
layerParams.type = "Power";
layerParams.set("shift", blob.at<float>(0));
}
else {
layerParams.type = "Shift";
layerParams.blobs.push_back(blob);
}
}
else {
layerParams.type = "Eltwise";
}
}
else if (layer_type == "Sub")
{
Mat blob = (-1.0f) * getBlob(node_proto, constBlobs, 1);
blob = blob.reshape(1, 1);
if (blob.total() == 1) {
layerParams.type = "Power";
layerParams.set("shift", blob.at<float>(0));
}
else {
layerParams.type = "Shift";
layerParams.blobs.push_back(blob);
}
}
else if (layer_type == "Constant")
{
CV_Assert(node_proto.input_size() == 0);
CV_Assert(layerParams.blobs.size() == 1);
constBlobs.insert(std::make_pair(layerParams.name, layerParams.blobs[0]));
continue;
}
else if (layer_type == "ImageScaler")
{
const float scale = layerParams.has("scale") ? layerParams.get<float>("scale") : 1.0f;
layerParams.erase("scale");
if (layerParams.has("bias"))
{
layerParams.type = "Scale";
layerParams.blobs.push_back(
Mat(Size(1, layerParams.get("bias").size()), CV_32FC1, scale));
layerParams.set("bias_term", true);
Mat bias(1, layerParams.get("bias").size(), CV_32FC1);
for (int j = 0; j < bias.total(); j++) {
bias.at<float>(0, j) = layerParams.get("bias").getRealValue(j);
}
layerParams.blobs.push_back(bias);
layerParams.erase("bias");
}
else {
layerParams.set("scale", scale);
layerParams.type = "Power";
}
}
else if (layer_type == "LeakyRelu")
{
layerParams.type = "ReLU";
replaceLayerParam(layerParams, "alpha", "negative_slope");
}
else if (layer_type == "LRN")
{
replaceLayerParam(layerParams, "size", "local_size");
}
else if (layer_type == "BatchNormalization")
{
if (node_proto.input_size() != 5)
CV_Error(Error::StsNotImplemented,
"Expected input, scale, bias, mean and var");
layerParams.type = "BatchNorm";
replaceLayerParam(layerParams, "epsilon", "eps");
replaceLayerParam(layerParams, "spatial", "use_global_stats");
Mat meanData = getBlob(node_proto, constBlobs, 3);
Mat stdData = getBlob(node_proto, constBlobs, 4);
layerParams.blobs.push_back(meanData);
layerParams.blobs.push_back(stdData);
if (!node_proto.input(1).empty()) {
layerParams.set("has_weight", true);
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, 1)); // weightData
} else {
layerParams.set("has_weight", false);
}
if (!node_proto.input(2).empty()) {
layerParams.set("has_bias", true);
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, 2)); // biasData
} else {
layerParams.set("has_bias", false);
}
}
else if (layer_type == "Gemm")
{
CV_Assert(node_proto.input_size() >= 2);
layerParams.type = "InnerProduct";
Mat weights = getBlob(node_proto, constBlobs, 1);
int ind_num_out = 0;
if (layerParams.has("transB") && !layerParams.get<int>("transB")) {
transpose(weights, weights);
ind_num_out = 1;
}
layerParams.blobs.push_back(weights);
if (node_proto.input_size() == 3) {
Mat bias = getBlob(node_proto, constBlobs, 2);
layerParams.blobs.push_back(bias);
}
layerParams.set("num_output", layerParams.blobs[0].size[ind_num_out]);
layerParams.set("bias_term", node_proto.input_size() == 3);
}
else if (layer_type == "MatMul")
{
CV_Assert(node_proto.input_size() == 2);
layerParams.type = "InnerProduct";
Mat blob = getBlob(node_proto, constBlobs, 1);
layerParams.blobs.push_back(blob.t());
layerParams.set("bias_term", false);
layerParams.set("num_output", layerParams.blobs[0].size[0]);
}
else if (layer_type == "Mul")
{
CV_Assert(node_proto.input_size() == 2);
if (layer_id.find(node_proto.input(1)) == layer_id.end()) {
Mat blob = getBlob(node_proto, constBlobs, 1);
blob = blob.reshape(1, 1);
if (blob.total() == 1) {
layerParams.set("scale", blob.at<float>(0));
layerParams.type = "Power";
}
else {
layerParams.blobs.push_back(blob);
layerParams.type = "Scale";
}
}
else {
layerParams.type = "Eltwise";
layerParams.set("operation", "prod");
}
}
else if (layer_type == "Conv")
{
CV_Assert(node_proto.input_size() >= 2);
layerParams.type = "Convolution";
for (int j = 1; j < node_proto.input_size(); j++) {
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, j));
}
layerParams.set("num_output", layerParams.blobs[0].size[0]);
layerParams.set("bias_term", node_proto.input_size() == 3);
}
else if (layer_type == "ConvTranspose")
{
CV_Assert(node_proto.input_size() >= 2);
layerParams.type = "Deconvolution";
for (int j = 1; j < node_proto.input_size(); j++) {
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, j));
}
layerParams.set("num_output", layerParams.blobs[0].size[1]);
layerParams.set("bias_term", node_proto.input_size() == 3);
}
else if (layer_type == "Transpose")
{
layerParams.type = "Permute";
replaceLayerParam(layerParams, "perm", "order");
}
else if (layer_type == "Unsqueeze")
{
CV_Assert(node_proto.input_size() == 1);
Mat input = getBlob(node_proto, constBlobs, 0);
DictValue axes = layerParams.get("axes");
std::vector<int> dims;
for (int j = 0; j < input.dims; j++) {
dims.push_back(input.size[j]);
}
CV_Assert(axes.getIntValue(axes.size()-1) <= dims.size());
for (int j = 0; j < axes.size(); j++) {
dims.insert(dims.begin() + axes.getIntValue(j), 1);
}
Mat out = input.reshape(0, dims);
constBlobs.insert(std::make_pair(layerParams.name, out));
continue;
}
else if (layer_type == "Reshape")
{
CV_Assert(node_proto.input_size() == 2 || layerParams.has("shape"));
if (node_proto.input_size() == 2) {
Mat blob = getBlob(node_proto, constBlobs, 1);
CV_Assert(blob.type() == CV_32SC1);
if (layer_id.find(node_proto.input(0)) == layer_id.end()) {
Mat input = getBlob(node_proto, constBlobs, 0);
Mat out = input.reshape(0, static_cast<std::vector<int> >(blob));
constBlobs.insert(std::make_pair(layerParams.name, out));
continue;
}
layerParams.set("dim", DictValue::arrayInt<int*>(
blob.ptr<int>(), blob.total() ));
}
else {
DictValue shape = layerParams.get("shape");
std::vector<int> dim;
for (int j = 0; j < shape.size(); j++) {
dim.push_back(shape.getIntValue(j));
}
if (layer_id.find(node_proto.input(0)) == layer_id.end()) {
Mat input = getBlob(node_proto, constBlobs, 0);
Mat out = input.reshape(0, dim);
constBlobs.insert(std::make_pair(layerParams.name, out));
continue;
}
replaceLayerParam(layerParams, "shape", "dim");
}
}
else if (layer_type == "Pad")
{
layerParams.type = "Padding";
}
else
{
for (int j = 0; j < node_proto.input_size(); j++) {
if (layer_id.find(node_proto.input(j)) == layer_id.end())
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, j));
}
}
int id = dstNet.addLayer(layerParams.name, layerParams.type, layerParams);
layer_id.insert(std::make_pair(layerParams.name, LayerInfo(id, 0)));
for (int j = 0; j < node_proto.input_size(); j++) {
layerId = layer_id.find(node_proto.input(j));
if (layerId != layer_id.end()) {
dstNet.connect(layerId->second.layerId, layerId->second.outputId, id, j);
}
}
}
}
Net readNetFromONNX(const String& onnxFile)
{
ONNXImporter onnxImporter(onnxFile.c_str());
Net net;
onnxImporter.populateNet(net);
return net;
}
Mat readTensorFromONNX(const String& path)
{
opencv_onnx::TensorProto tensor_proto = opencv_onnx::TensorProto();
std::fstream input(path.c_str(), std::ios::in | std::ios::binary);
if (!tensor_proto.ParseFromIstream(&input)) {
CV_Error(Error::StsUnsupportedFormat, "Failed to parse data");
}
Mat mat = getMatFromTensor(tensor_proto);
releaseONNXTensor(tensor_proto);
return mat;
}
CV__DNN_EXPERIMENTAL_NS_END
}} // namespace
#endif