Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
625 lines
23 KiB
625 lines
23 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
// Copyright (C) 2018, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
|
|
#include "../precomp.hpp" |
|
|
|
#ifdef HAVE_PROTOBUF |
|
|
|
#include <iostream> |
|
#include <fstream> |
|
#include <string> |
|
#include <limits> |
|
#include <algorithm> |
|
|
|
|
|
#if defined(__GNUC__) && __GNUC__ >= 5 |
|
#pragma GCC diagnostic push |
|
#pragma GCC diagnostic ignored "-Wsuggest-override" |
|
#endif |
|
#include "opencv-onnx.pb.h" |
|
#if defined(__GNUC__) && __GNUC__ >= 5 |
|
#pragma GCC diagnostic pop |
|
#endif |
|
|
|
namespace cv { |
|
namespace dnn { |
|
CV__DNN_EXPERIMENTAL_NS_BEGIN |
|
|
|
|
|
class ONNXImporter |
|
{ |
|
opencv_onnx::ModelProto model_proto; |
|
struct LayerInfo { |
|
int layerId; |
|
int outputId; |
|
LayerInfo(int _layerId, int _outputId) : layerId(_layerId), outputId(_outputId) {} |
|
}; |
|
|
|
std::map<std::string, Mat> getGraphTensors( |
|
const opencv_onnx::GraphProto& graph_proto); |
|
Mat getBlob(const opencv_onnx::NodeProto& node_proto, const std::map<std::string, Mat>& constBlobs, int index); |
|
|
|
LayerParams getLayerParams(const opencv_onnx::NodeProto& node_proto); |
|
bool isCeilMode(const LayerParams& layerParams); |
|
|
|
public: |
|
|
|
ONNXImporter(const char *onnxFile) |
|
{ |
|
std::fstream input(onnxFile, std::ios::in | std::ios::binary); |
|
|
|
if (!model_proto.ParseFromIstream(&input)) |
|
CV_Error(Error::StsUnsupportedFormat, "Failed to parse onnx model"); |
|
} |
|
|
|
void populateNet(Net dstNet); |
|
}; |
|
|
|
inline void replaceLayerParam(LayerParams& layerParams, const String& oldKey, const String& newKey) |
|
{ |
|
if (layerParams.has(oldKey)) { |
|
layerParams.set(newKey, layerParams.get(oldKey)); |
|
layerParams.erase(oldKey); |
|
} |
|
} |
|
|
|
void releaseONNXTensor(opencv_onnx::TensorProto& tensor_proto) |
|
{ |
|
if (!tensor_proto.raw_data().empty()) { |
|
delete tensor_proto.release_raw_data(); |
|
} |
|
} |
|
|
|
template<typename T1, typename T2> |
|
void convertInt64ToInt32(const T1& src, T2& dst, int size) |
|
{ |
|
for (int i = 0; i < size; i++) { |
|
if (src[i] < std::numeric_limits<int32_t>::min() || src[i] > std::numeric_limits<int32_t>::max()) { |
|
CV_Error(Error::StsOutOfRange, "Input is out of OpenCV 32S range"); |
|
} |
|
dst[i] = saturate_cast<int32_t>(src[i]); |
|
} |
|
} |
|
|
|
Mat getMatFromTensor(opencv_onnx::TensorProto& tensor_proto) |
|
{ |
|
CV_Assert(!tensor_proto.raw_data().empty() || !tensor_proto.float_data().empty() |
|
|| !tensor_proto.double_data().empty() || !tensor_proto.int64_data().empty()); |
|
|
|
opencv_onnx::TensorProto_DataType datatype = tensor_proto.data_type(); |
|
Mat blob; |
|
std::vector<int> sizes; |
|
for (int i = 0; i < tensor_proto.dims_size(); i++) { |
|
sizes.push_back(tensor_proto.dims(i)); |
|
} |
|
if (sizes.empty()) |
|
sizes.assign(1, 1); |
|
if (datatype == opencv_onnx::TensorProto_DataType_FLOAT) { |
|
|
|
if (!tensor_proto.float_data().empty()) { |
|
const ::google::protobuf::RepeatedField<float> field = tensor_proto.float_data(); |
|
Mat(sizes, CV_32FC1, (void*)field.data()).copyTo(blob); |
|
} |
|
else { |
|
char* val = const_cast<char*>(tensor_proto.raw_data().c_str()); |
|
Mat(sizes, CV_32FC1, val).copyTo(blob); |
|
} |
|
} |
|
else if (datatype == opencv_onnx::TensorProto_DataType_DOUBLE) |
|
{ |
|
const ::google::protobuf::RepeatedField<double> field = tensor_proto.double_data(); |
|
CV_Assert(!field.empty()); |
|
Mat(sizes, CV_64FC1, (void*)field.data()).convertTo(blob, CV_32FC1); |
|
} |
|
else if (datatype == opencv_onnx::TensorProto_DataType_INT64) |
|
{ |
|
blob.create(sizes, CV_32SC1); |
|
int32_t* dst = reinterpret_cast<int32_t*>(blob.data); |
|
|
|
if (!tensor_proto.int64_data().empty()) { |
|
::google::protobuf::RepeatedField< ::google::protobuf::int64> src = tensor_proto.int64_data(); |
|
convertInt64ToInt32(src, dst, blob.total()); |
|
} |
|
else |
|
{ |
|
char* val = const_cast<char*>(tensor_proto.raw_data().c_str()); |
|
int64_t* src = reinterpret_cast<int64_t*>(val); |
|
convertInt64ToInt32(src, dst, blob.total()); |
|
} |
|
} |
|
else |
|
CV_Error(Error::StsUnsupportedFormat, "Unsupported data type: " + |
|
opencv_onnx::TensorProto_DataType_Name(datatype)); |
|
return blob; |
|
} |
|
|
|
std::map<std::string, Mat> ONNXImporter::getGraphTensors( |
|
const opencv_onnx::GraphProto& graph_proto) |
|
{ |
|
opencv_onnx::TensorProto tensor_proto; |
|
std::map<std::string, Mat> layers_weights; |
|
|
|
for (int i = 0; i < graph_proto.initializer_size(); i++) |
|
{ |
|
tensor_proto = graph_proto.initializer(i); |
|
Mat mat = getMatFromTensor(tensor_proto); |
|
releaseONNXTensor(tensor_proto); |
|
layers_weights.insert(std::make_pair(tensor_proto.name(), mat)); |
|
} |
|
return layers_weights; |
|
} |
|
|
|
LayerParams ONNXImporter::getLayerParams(const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
LayerParams lp; |
|
for(int i = 0; i < node_proto.attribute_size(); i++) |
|
{ |
|
opencv_onnx::AttributeProto attribute_proto = node_proto.attribute(i); |
|
std::string attribute_name = attribute_proto.name(); |
|
|
|
if(attribute_name == "kernel_shape") |
|
{ |
|
CV_Assert(attribute_proto.ints_size() == 2); |
|
lp.set("kernel_h", saturate_cast<int32_t>(attribute_proto.ints(0))); |
|
lp.set("kernel_w", saturate_cast<int32_t>(attribute_proto.ints(1))); |
|
} |
|
else if(attribute_name == "strides") |
|
{ |
|
CV_Assert(attribute_proto.ints_size() == 2); |
|
lp.set("stride_h", saturate_cast<int32_t>(attribute_proto.ints(0))); |
|
lp.set("stride_w", saturate_cast<int32_t>(attribute_proto.ints(1))); |
|
} |
|
else if(attribute_name == "pads") |
|
{ |
|
if (node_proto.op_type() == "Pad") |
|
{ |
|
// Padding layer. |
|
// Paddings are in order begin0, begin1, .. beginN, end0, end1, ..., endN. |
|
// We need to shuffle it to begin0, end0, begin1, end1, ... |
|
CV_Assert(attribute_proto.ints_size() % 2 == 0); |
|
const int dims = attribute_proto.ints_size() / 2; |
|
std::vector<int32_t> paddings; |
|
paddings.reserve(attribute_proto.ints_size()); |
|
for (int i = 0; i < dims; ++i) |
|
{ |
|
paddings.push_back(attribute_proto.ints(i)); |
|
paddings.push_back(attribute_proto.ints(dims + i)); |
|
} |
|
lp.set("paddings", DictValue::arrayInt(&paddings[0], paddings.size())); |
|
} |
|
else |
|
{ |
|
// Convolution or pooling. |
|
CV_Assert(attribute_proto.ints_size() == 4); |
|
lp.set("pad_t", saturate_cast<int32_t>(attribute_proto.ints(0))); |
|
lp.set("pad_l", saturate_cast<int32_t>(attribute_proto.ints(1))); |
|
lp.set("pad_b", saturate_cast<int32_t>(attribute_proto.ints(2))); |
|
lp.set("pad_r", saturate_cast<int32_t>(attribute_proto.ints(3))); |
|
} |
|
} |
|
else if(attribute_name == "auto_pad") |
|
{ |
|
if (attribute_proto.s() == "SAME_UPPER" || attribute_proto.s() == "SAME_LOWER") { |
|
lp.set("pad_mode", "SAME"); |
|
} |
|
else if (attribute_proto.s() == "VALID") { |
|
lp.set("pad_mode", "VALID"); |
|
} |
|
} |
|
else if(attribute_name == "dilations") |
|
{ |
|
CV_Assert(attribute_proto.ints_size() == 2); |
|
lp.set("dilation_h", saturate_cast<int32_t>(attribute_proto.ints(0))); |
|
lp.set("dilation_w", saturate_cast<int32_t>(attribute_proto.ints(1))); |
|
} |
|
else if (attribute_proto.has_i()) |
|
{ |
|
::google::protobuf::int64 src = attribute_proto.i(); |
|
if (src < std::numeric_limits<int32_t>::min() || src > std::numeric_limits<int32_t>::max()) |
|
CV_Error(Error::StsOutOfRange, "Input is out of OpenCV 32S range"); |
|
else |
|
lp.set(attribute_name, saturate_cast<int32_t>(src)); |
|
} |
|
else if (attribute_proto.has_f()) |
|
{ |
|
lp.set(attribute_name, attribute_proto.f()); |
|
} |
|
else if (attribute_proto.has_s()) |
|
{ |
|
lp.set(attribute_name, attribute_proto.s()); |
|
} |
|
else if (attribute_proto.floats_size() > 0) |
|
{ |
|
lp.set(attribute_name, DictValue::arrayReal( |
|
attribute_proto.floats().data(), attribute_proto.floats_size())); |
|
} |
|
else if (attribute_proto.ints_size() > 0) |
|
{ |
|
const ::google::protobuf::RepeatedField< ::google::protobuf::int64> src = attribute_proto.ints(); |
|
std::vector<int32_t> dst(attribute_proto.ints_size()); |
|
convertInt64ToInt32(src, dst, attribute_proto.ints_size()); |
|
lp.set(attribute_proto.name(), DictValue::arrayInt(&dst[0], attribute_proto.ints_size())); |
|
} |
|
else if (attribute_proto.has_t()) |
|
{ |
|
opencv_onnx::TensorProto tensor = attribute_proto.t(); |
|
Mat blob = getMatFromTensor(tensor); |
|
lp.blobs.push_back(blob); |
|
} |
|
else if (attribute_proto.has_g() || attribute_proto.strings_size() > 0 || |
|
attribute_proto.tensors_size() > 0 || attribute_proto.graphs_size() > 0) |
|
{ |
|
CV_Error(Error::StsNotImplemented, "Unexpected attribute type"); |
|
} |
|
else |
|
CV_Error(Error::StsNotImplemented, "Unsupported attribute type"); |
|
} |
|
return lp; |
|
} |
|
|
|
Mat ONNXImporter::getBlob(const opencv_onnx::NodeProto& node_proto, |
|
const std::map<std::string, Mat>& constBlobs, int index) |
|
{ |
|
CV_Assert(index < node_proto.input_size()); |
|
std::map<std::string, Mat>::const_iterator constBlob; |
|
constBlob = constBlobs.find(node_proto.input(index)); |
|
if (constBlob == constBlobs.end()) { |
|
CV_Error(Error::StsObjectNotFound, |
|
"Blob " + node_proto.input(index) + " not found in const blobs"); |
|
} |
|
return constBlob->second; |
|
} |
|
|
|
|
|
bool ONNXImporter::isCeilMode(const LayerParams& layerParams) { |
|
if (!layerParams.has("pad_mode")) { |
|
if (layerParams.has("pad_h")) { |
|
return layerParams.get<int>("pad_h") != layerParams.get<int>("pad_b") || |
|
layerParams.get<int>("pad_w") != layerParams.get<int>("pad_r"); |
|
} |
|
else |
|
return false; // all pads == 0 |
|
} |
|
return true; |
|
} |
|
|
|
void ONNXImporter::populateNet(Net dstNet) |
|
{ |
|
CV_Assert(model_proto.has_graph()); |
|
opencv_onnx::GraphProto graph_proto = model_proto.graph(); |
|
std::map<std::string, Mat> constBlobs = getGraphTensors(graph_proto); |
|
|
|
std::string framework_name; |
|
if (model_proto.has_producer_name()) { |
|
framework_name = model_proto.producer_name(); |
|
} |
|
|
|
// create map with network inputs (without const blobs) |
|
std::map<std::string, LayerInfo> layer_id; |
|
std::map<std::string, LayerInfo>::iterator layerId; |
|
// fill map: push layer name, layer id and output id |
|
std::vector<String> netInputs; |
|
for (int j = 0; j < graph_proto.input_size(); j++) |
|
{ |
|
const std::string& name = graph_proto.input(j).name(); |
|
if (constBlobs.find(name) == constBlobs.end()) { |
|
netInputs.push_back(name); |
|
layer_id.insert(std::make_pair(name, LayerInfo(0, netInputs.size() - 1))); |
|
} |
|
} |
|
dstNet.setInputsNames(netInputs); |
|
|
|
int layersSize = graph_proto.node_size(); |
|
LayerParams layerParams; |
|
opencv_onnx::NodeProto node_proto; |
|
|
|
for(int i = 0; i < layersSize; i++) |
|
{ |
|
node_proto = graph_proto.node(i); |
|
layerParams = getLayerParams(node_proto); |
|
CV_Assert(node_proto.output_size() >= 1); |
|
layerParams.name = node_proto.output(0); |
|
|
|
std::string layer_type = node_proto.op_type(); |
|
layerParams.type = layer_type; |
|
|
|
|
|
if (layer_type == "MaxPool") |
|
{ |
|
layerParams.type = "Pooling"; |
|
layerParams.set("pool", "MAX"); |
|
layerParams.set("ceil_mode", isCeilMode(layerParams)); |
|
} |
|
else if (layer_type == "AveragePool") |
|
{ |
|
layerParams.type = "Pooling"; |
|
layerParams.set("pool", "AVE"); |
|
layerParams.set("ceil_mode", isCeilMode(layerParams)); |
|
layerParams.set("ave_pool_padded_area", framework_name == "pytorch"); |
|
} |
|
else if (layer_type == "GlobalAveragePool") |
|
{ |
|
layerParams.type = "Pooling"; |
|
layerParams.set("pool", "AVE"); |
|
layerParams.set("global_pooling", true); |
|
} |
|
else if (layer_type == "Add" || layer_type == "Sum") |
|
{ |
|
if (layer_id.find(node_proto.input(1)) == layer_id.end()) |
|
{ |
|
Mat blob = getBlob(node_proto, constBlobs, 1); |
|
blob = blob.reshape(1, 1); |
|
if (blob.total() == 1) { |
|
layerParams.type = "Power"; |
|
layerParams.set("shift", blob.at<float>(0)); |
|
} |
|
else { |
|
layerParams.type = "Shift"; |
|
layerParams.blobs.push_back(blob); |
|
} |
|
} |
|
else { |
|
layerParams.type = "Eltwise"; |
|
} |
|
} |
|
else if (layer_type == "Sub") |
|
{ |
|
Mat blob = (-1.0f) * getBlob(node_proto, constBlobs, 1); |
|
blob = blob.reshape(1, 1); |
|
if (blob.total() == 1) { |
|
layerParams.type = "Power"; |
|
layerParams.set("shift", blob.at<float>(0)); |
|
} |
|
else { |
|
layerParams.type = "Shift"; |
|
layerParams.blobs.push_back(blob); |
|
} |
|
} |
|
else if (layer_type == "Constant") |
|
{ |
|
CV_Assert(node_proto.input_size() == 0); |
|
CV_Assert(layerParams.blobs.size() == 1); |
|
constBlobs.insert(std::make_pair(layerParams.name, layerParams.blobs[0])); |
|
continue; |
|
} |
|
else if (layer_type == "ImageScaler") |
|
{ |
|
const float scale = layerParams.has("scale") ? layerParams.get<float>("scale") : 1.0f; |
|
layerParams.erase("scale"); |
|
|
|
if (layerParams.has("bias")) |
|
{ |
|
layerParams.type = "Scale"; |
|
layerParams.blobs.push_back( |
|
Mat(Size(1, layerParams.get("bias").size()), CV_32FC1, scale)); |
|
|
|
layerParams.set("bias_term", true); |
|
Mat bias(1, layerParams.get("bias").size(), CV_32FC1); |
|
for (int j = 0; j < bias.total(); j++) { |
|
bias.at<float>(0, j) = layerParams.get("bias").getRealValue(j); |
|
} |
|
layerParams.blobs.push_back(bias); |
|
layerParams.erase("bias"); |
|
} |
|
else { |
|
layerParams.set("scale", scale); |
|
layerParams.type = "Power"; |
|
} |
|
} |
|
else if (layer_type == "LeakyRelu") |
|
{ |
|
layerParams.type = "ReLU"; |
|
replaceLayerParam(layerParams, "alpha", "negative_slope"); |
|
} |
|
else if (layer_type == "LRN") |
|
{ |
|
replaceLayerParam(layerParams, "size", "local_size"); |
|
} |
|
else if (layer_type == "BatchNormalization") |
|
{ |
|
if (node_proto.input_size() != 5) |
|
CV_Error(Error::StsNotImplemented, |
|
"Expected input, scale, bias, mean and var"); |
|
|
|
layerParams.type = "BatchNorm"; |
|
replaceLayerParam(layerParams, "epsilon", "eps"); |
|
replaceLayerParam(layerParams, "spatial", "use_global_stats"); |
|
|
|
Mat meanData = getBlob(node_proto, constBlobs, 3); |
|
Mat stdData = getBlob(node_proto, constBlobs, 4); |
|
|
|
layerParams.blobs.push_back(meanData); |
|
layerParams.blobs.push_back(stdData); |
|
|
|
if (!node_proto.input(1).empty()) { |
|
layerParams.set("has_weight", true); |
|
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, 1)); // weightData |
|
} else { |
|
layerParams.set("has_weight", false); |
|
} |
|
|
|
if (!node_proto.input(2).empty()) { |
|
layerParams.set("has_bias", true); |
|
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, 2)); // biasData |
|
} else { |
|
layerParams.set("has_bias", false); |
|
} |
|
} |
|
else if (layer_type == "Gemm") |
|
{ |
|
CV_Assert(node_proto.input_size() >= 2); |
|
layerParams.type = "InnerProduct"; |
|
Mat weights = getBlob(node_proto, constBlobs, 1); |
|
int ind_num_out = 0; |
|
if (layerParams.has("transB") && !layerParams.get<int>("transB")) { |
|
transpose(weights, weights); |
|
ind_num_out = 1; |
|
} |
|
layerParams.blobs.push_back(weights); |
|
|
|
if (node_proto.input_size() == 3) { |
|
Mat bias = getBlob(node_proto, constBlobs, 2); |
|
layerParams.blobs.push_back(bias); |
|
} |
|
|
|
layerParams.set("num_output", layerParams.blobs[0].size[ind_num_out]); |
|
layerParams.set("bias_term", node_proto.input_size() == 3); |
|
} |
|
else if (layer_type == "MatMul") |
|
{ |
|
CV_Assert(node_proto.input_size() == 2); |
|
layerParams.type = "InnerProduct"; |
|
Mat blob = getBlob(node_proto, constBlobs, 1); |
|
layerParams.blobs.push_back(blob.t()); |
|
layerParams.set("bias_term", false); |
|
layerParams.set("num_output", layerParams.blobs[0].size[0]); |
|
} |
|
else if (layer_type == "Mul") |
|
{ |
|
CV_Assert(node_proto.input_size() == 2); |
|
if (layer_id.find(node_proto.input(1)) == layer_id.end()) { |
|
Mat blob = getBlob(node_proto, constBlobs, 1); |
|
blob = blob.reshape(1, 1); |
|
if (blob.total() == 1) { |
|
layerParams.set("scale", blob.at<float>(0)); |
|
layerParams.type = "Power"; |
|
} |
|
else { |
|
layerParams.blobs.push_back(blob); |
|
layerParams.type = "Scale"; |
|
} |
|
} |
|
else { |
|
layerParams.type = "Eltwise"; |
|
layerParams.set("operation", "prod"); |
|
} |
|
} |
|
else if (layer_type == "Conv") |
|
{ |
|
CV_Assert(node_proto.input_size() >= 2); |
|
layerParams.type = "Convolution"; |
|
for (int j = 1; j < node_proto.input_size(); j++) { |
|
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, j)); |
|
} |
|
layerParams.set("num_output", layerParams.blobs[0].size[0]); |
|
layerParams.set("bias_term", node_proto.input_size() == 3); |
|
} |
|
else if (layer_type == "ConvTranspose") |
|
{ |
|
CV_Assert(node_proto.input_size() >= 2); |
|
layerParams.type = "Deconvolution"; |
|
for (int j = 1; j < node_proto.input_size(); j++) { |
|
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, j)); |
|
} |
|
layerParams.set("num_output", layerParams.blobs[0].size[1]); |
|
layerParams.set("bias_term", node_proto.input_size() == 3); |
|
} |
|
else if (layer_type == "Transpose") |
|
{ |
|
layerParams.type = "Permute"; |
|
replaceLayerParam(layerParams, "perm", "order"); |
|
} |
|
else if (layer_type == "Unsqueeze") |
|
{ |
|
CV_Assert(node_proto.input_size() == 1); |
|
Mat input = getBlob(node_proto, constBlobs, 0); |
|
|
|
DictValue axes = layerParams.get("axes"); |
|
std::vector<int> dims; |
|
for (int j = 0; j < input.dims; j++) { |
|
dims.push_back(input.size[j]); |
|
} |
|
CV_Assert(axes.getIntValue(axes.size()-1) <= dims.size()); |
|
for (int j = 0; j < axes.size(); j++) { |
|
dims.insert(dims.begin() + axes.getIntValue(j), 1); |
|
} |
|
|
|
Mat out = input.reshape(0, dims); |
|
constBlobs.insert(std::make_pair(layerParams.name, out)); |
|
continue; |
|
} |
|
else if (layer_type == "Reshape") |
|
{ |
|
CV_Assert(node_proto.input_size() == 2 || layerParams.has("shape")); |
|
|
|
if (node_proto.input_size() == 2) { |
|
Mat blob = getBlob(node_proto, constBlobs, 1); |
|
CV_Assert(blob.type() == CV_32SC1); |
|
|
|
if (layer_id.find(node_proto.input(0)) == layer_id.end()) { |
|
Mat input = getBlob(node_proto, constBlobs, 0); |
|
Mat out = input.reshape(0, static_cast<std::vector<int> >(blob)); |
|
constBlobs.insert(std::make_pair(layerParams.name, out)); |
|
continue; |
|
} |
|
layerParams.set("dim", DictValue::arrayInt<int*>( |
|
blob.ptr<int>(), blob.total() )); |
|
} |
|
else { |
|
DictValue shape = layerParams.get("shape"); |
|
std::vector<int> dim; |
|
for (int j = 0; j < shape.size(); j++) { |
|
dim.push_back(shape.getIntValue(j)); |
|
} |
|
|
|
if (layer_id.find(node_proto.input(0)) == layer_id.end()) { |
|
Mat input = getBlob(node_proto, constBlobs, 0); |
|
Mat out = input.reshape(0, dim); |
|
constBlobs.insert(std::make_pair(layerParams.name, out)); |
|
continue; |
|
} |
|
replaceLayerParam(layerParams, "shape", "dim"); |
|
} |
|
} |
|
else if (layer_type == "Pad") |
|
{ |
|
layerParams.type = "Padding"; |
|
} |
|
else |
|
{ |
|
for (int j = 0; j < node_proto.input_size(); j++) { |
|
if (layer_id.find(node_proto.input(j)) == layer_id.end()) |
|
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, j)); |
|
} |
|
} |
|
|
|
int id = dstNet.addLayer(layerParams.name, layerParams.type, layerParams); |
|
layer_id.insert(std::make_pair(layerParams.name, LayerInfo(id, 0))); |
|
|
|
for (int j = 0; j < node_proto.input_size(); j++) { |
|
layerId = layer_id.find(node_proto.input(j)); |
|
if (layerId != layer_id.end()) { |
|
dstNet.connect(layerId->second.layerId, layerId->second.outputId, id, j); |
|
} |
|
} |
|
} |
|
} |
|
|
|
Net readNetFromONNX(const String& onnxFile) |
|
{ |
|
ONNXImporter onnxImporter(onnxFile.c_str()); |
|
Net net; |
|
onnxImporter.populateNet(net); |
|
return net; |
|
} |
|
|
|
Mat readTensorFromONNX(const String& path) |
|
{ |
|
opencv_onnx::TensorProto tensor_proto = opencv_onnx::TensorProto(); |
|
std::fstream input(path.c_str(), std::ios::in | std::ios::binary); |
|
if (!tensor_proto.ParseFromIstream(&input)) { |
|
CV_Error(Error::StsUnsupportedFormat, "Failed to parse data"); |
|
} |
|
Mat mat = getMatFromTensor(tensor_proto); |
|
releaseONNXTensor(tensor_proto); |
|
return mat; |
|
} |
|
|
|
CV__DNN_EXPERIMENTAL_NS_END |
|
}} // namespace |
|
|
|
#endif
|
|
|