Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

255 lines
9.3 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "test_precomp.hpp"
#include "test_invariance_utils.hpp"
namespace opencv_test { namespace {
using namespace perf;
#define SHOW_DEBUG_LOG 1
typedef tuple<std::string, Ptr<FeatureDetector>, float, float> String_FeatureDetector_Float_Float_t;
const static std::string IMAGE_TSUKUBA = "features2d/tsukuba.png";
const static std::string IMAGE_BIKES = "detectors_descriptors_evaluation/images_datasets/bikes/img1.png";
#define Value(...) Values(String_FeatureDetector_Float_Float_t(__VA_ARGS__))
static
void matchKeyPoints(const vector<KeyPoint>& keypoints0, const Mat& H,
const vector<KeyPoint>& keypoints1,
vector<DMatch>& matches)
{
vector<Point2f> points0;
KeyPoint::convert(keypoints0, points0);
Mat points0t;
if(H.empty())
points0t = Mat(points0);
else
perspectiveTransform(Mat(points0), points0t, H);
matches.clear();
for(int i0 = 0; i0 < static_cast<int>(keypoints0.size()); i0++)
{
int nearestPointIndex = -1;
float maxIntersectRatio = 0.f;
const float r0 = 0.5f * keypoints0[i0].size;
for(size_t i1 = 0; i1 < keypoints1.size(); i1++)
{
float r1 = 0.5f * keypoints1[i1].size;
float intersectRatio = calcIntersectRatio(points0t.at<Point2f>(i0), r0,
keypoints1[i1].pt, r1);
if(intersectRatio > maxIntersectRatio)
{
maxIntersectRatio = intersectRatio;
nearestPointIndex = static_cast<int>(i1);
}
}
matches.push_back(DMatch(i0, nearestPointIndex, maxIntersectRatio));
}
}
class DetectorInvariance : public TestWithParam<String_FeatureDetector_Float_Float_t>
{
protected:
virtual void SetUp() {
// Read test data
const std::string filename = cvtest::TS::ptr()->get_data_path() + get<0>(GetParam());
image0 = imread(filename);
ASSERT_FALSE(image0.empty()) << "couldn't read input image";
featureDetector = get<1>(GetParam());
minKeyPointMatchesRatio = get<2>(GetParam());
minInliersRatio = get<3>(GetParam());
}
Ptr<FeatureDetector> featureDetector;
float minKeyPointMatchesRatio;
float minInliersRatio;
Mat image0;
};
typedef DetectorInvariance DetectorScaleInvariance;
typedef DetectorInvariance DetectorRotationInvariance;
TEST_P(DetectorRotationInvariance, rotation)
{
Mat image1, mask1;
const int borderSize = 16;
Mat mask0(image0.size(), CV_8UC1, Scalar(0));
mask0(Rect(borderSize, borderSize, mask0.cols - 2*borderSize, mask0.rows - 2*borderSize)).setTo(Scalar(255));
vector<KeyPoint> keypoints0;
featureDetector->detect(image0, keypoints0, mask0);
EXPECT_GE(keypoints0.size(), 15u);
const int maxAngle = 360, angleStep = 15;
for(int angle = 0; angle < maxAngle; angle += angleStep)
{
Mat H = rotateImage(image0, mask0, static_cast<float>(angle), image1, mask1);
vector<KeyPoint> keypoints1;
featureDetector->detect(image1, keypoints1, mask1);
vector<DMatch> matches;
matchKeyPoints(keypoints0, H, keypoints1, matches);
int angleInliersCount = 0;
const float minIntersectRatio = 0.5f;
int keyPointMatchesCount = 0;
for(size_t m = 0; m < matches.size(); m++)
{
if(matches[m].distance < minIntersectRatio)
continue;
keyPointMatchesCount++;
// Check does this inlier have consistent angles
const float maxAngleDiff = 15.f; // grad
float angle0 = keypoints0[matches[m].queryIdx].angle;
float angle1 = keypoints1[matches[m].trainIdx].angle;
ASSERT_FALSE(angle0 == -1 || angle1 == -1) << "Given FeatureDetector is not rotation invariant, it can not be tested here.";
ASSERT_GE(angle0, 0.f);
ASSERT_LT(angle0, 360.f);
ASSERT_GE(angle1, 0.f);
ASSERT_LT(angle1, 360.f);
float rotAngle0 = angle0 + angle;
if(rotAngle0 >= 360.f)
rotAngle0 -= 360.f;
float angleDiff = std::max(rotAngle0, angle1) - std::min(rotAngle0, angle1);
angleDiff = std::min(angleDiff, static_cast<float>(360.f - angleDiff));
ASSERT_GE(angleDiff, 0.f);
bool isAngleCorrect = angleDiff < maxAngleDiff;
if(isAngleCorrect)
angleInliersCount++;
}
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints0.size();
EXPECT_GE(keyPointMatchesRatio, minKeyPointMatchesRatio) << "angle: " << angle;
if(keyPointMatchesCount)
{
float angleInliersRatio = static_cast<float>(angleInliersCount) / keyPointMatchesCount;
EXPECT_GE(angleInliersRatio, minInliersRatio) << "angle: " << angle;
}
#if SHOW_DEBUG_LOG
std::cout
<< "angle = " << angle
<< ", keypoints = " << keypoints1.size()
<< ", keyPointMatchesRatio = " << keyPointMatchesRatio
<< ", angleInliersRatio = " << (keyPointMatchesCount ? (static_cast<float>(angleInliersCount) / keyPointMatchesCount) : 0)
<< std::endl;
#endif
}
}
TEST_P(DetectorScaleInvariance, scale)
{
vector<KeyPoint> keypoints0;
featureDetector->detect(image0, keypoints0);
EXPECT_GE(keypoints0.size(), 15u);
for(int scaleIdx = 1; scaleIdx <= 3; scaleIdx++)
{
float scale = 1.f + scaleIdx * 0.5f;
Mat image1;
resize(image0, image1, Size(), 1./scale, 1./scale, INTER_LINEAR_EXACT);
vector<KeyPoint> keypoints1, osiKeypoints1; // osi - original size image
featureDetector->detect(image1, keypoints1);
EXPECT_GE(keypoints1.size(), 15u);
EXPECT_LE(keypoints1.size(), keypoints0.size()) << "Strange behavior of the detector. "
"It gives more points count in an image of the smaller size.";
scaleKeyPoints(keypoints1, osiKeypoints1, scale);
vector<DMatch> matches;
// image1 is query image (it's reduced image0)
// image0 is train image
matchKeyPoints(osiKeypoints1, Mat(), keypoints0, matches);
const float minIntersectRatio = 0.5f;
int keyPointMatchesCount = 0;
int scaleInliersCount = 0;
for(size_t m = 0; m < matches.size(); m++)
{
if(matches[m].distance < minIntersectRatio)
continue;
keyPointMatchesCount++;
// Check does this inlier have consistent sizes
const float maxSizeDiff = 0.8f;//0.9f; // grad
float size0 = keypoints0[matches[m].trainIdx].size;
float size1 = osiKeypoints1[matches[m].queryIdx].size;
ASSERT_GT(size0, 0);
ASSERT_GT(size1, 0);
if(std::min(size0, size1) > maxSizeDiff * std::max(size0, size1))
scaleInliersCount++;
}
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints1.size();
EXPECT_GE(keyPointMatchesRatio, minKeyPointMatchesRatio);
if(keyPointMatchesCount)
{
float scaleInliersRatio = static_cast<float>(scaleInliersCount) / keyPointMatchesCount;
EXPECT_GE(scaleInliersRatio, minInliersRatio);
}
#if SHOW_DEBUG_LOG
std::cout
<< "scale = " << scale
<< ", keyPointMatchesRatio = " << keyPointMatchesRatio
<< ", scaleInliersRatio = " << (keyPointMatchesCount ? static_cast<float>(scaleInliersCount) / keyPointMatchesCount : 0)
<< std::endl;
#endif
}
}
/*
* Detector's rotation invariance check
*/
INSTANTIATE_TEST_CASE_P(SIFT, DetectorRotationInvariance,
Value(IMAGE_TSUKUBA, SIFT::create(), 0.45f, 0.70f));
INSTANTIATE_TEST_CASE_P(BRISK, DetectorRotationInvariance,
Value(IMAGE_TSUKUBA, BRISK::create(), 0.45f, 0.76f));
INSTANTIATE_TEST_CASE_P(ORB, DetectorRotationInvariance,
Value(IMAGE_TSUKUBA, ORB::create(), 0.5f, 0.76f));
INSTANTIATE_TEST_CASE_P(AKAZE, DetectorRotationInvariance,
Value(IMAGE_TSUKUBA, AKAZE::create(), 0.5f, 0.71f));
INSTANTIATE_TEST_CASE_P(AKAZE_DESCRIPTOR_KAZE, DetectorRotationInvariance,
Value(IMAGE_TSUKUBA, AKAZE::create(AKAZE::DESCRIPTOR_KAZE), 0.5f, 0.71f));
/*
* Detector's scale invariance check
*/
INSTANTIATE_TEST_CASE_P(SIFT, DetectorScaleInvariance,
Value(IMAGE_BIKES, SIFT::create(0, 3, 0.09), 0.69f, 0.98f));
INSTANTIATE_TEST_CASE_P(BRISK, DetectorScaleInvariance,
Value(IMAGE_BIKES, BRISK::create(), 0.08f, 0.49f));
INSTANTIATE_TEST_CASE_P(ORB, DetectorScaleInvariance,
Value(IMAGE_BIKES, ORB::create(), 0.08f, 0.49f));
INSTANTIATE_TEST_CASE_P(KAZE, DetectorScaleInvariance,
Value(IMAGE_BIKES, KAZE::create(), 0.08f, 0.49f));
INSTANTIATE_TEST_CASE_P(AKAZE, DetectorScaleInvariance,
Value(IMAGE_BIKES, AKAZE::create(), 0.08f, 0.49f));
INSTANTIATE_TEST_CASE_P(AKAZE_DESCRIPTOR_KAZE, DetectorScaleInvariance,
Value(IMAGE_BIKES, AKAZE::create(AKAZE::DESCRIPTOR_KAZE), 0.08f, 0.49f));
}} // namespace