mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
833 lines
24 KiB
833 lines
24 KiB
/* |
|
* jcphuff.c |
|
* |
|
* Copyright (C) 1995-1997, Thomas G. Lane. |
|
* This file is part of the Independent JPEG Group's software. |
|
* For conditions of distribution and use, see the accompanying README file. |
|
* |
|
* This file contains Huffman entropy encoding routines for progressive JPEG. |
|
* |
|
* We do not support output suspension in this module, since the library |
|
* currently does not allow multiple-scan files to be written with output |
|
* suspension. |
|
*/ |
|
|
|
#define JPEG_INTERNALS |
|
#include "jinclude.h" |
|
#include "jpeglib.h" |
|
#include "jchuff.h" /* Declarations shared with jchuff.c */ |
|
|
|
#ifdef C_PROGRESSIVE_SUPPORTED |
|
|
|
/* Expanded entropy encoder object for progressive Huffman encoding. */ |
|
|
|
typedef struct { |
|
struct jpeg_entropy_encoder pub; /* public fields */ |
|
|
|
/* Mode flag: TRUE for optimization, FALSE for actual data output */ |
|
boolean gather_statistics; |
|
|
|
/* Bit-level coding status. |
|
* next_output_byte/free_in_buffer are local copies of cinfo->dest fields. |
|
*/ |
|
JOCTET * next_output_byte; /* => next byte to write in buffer */ |
|
size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
|
INT32 put_buffer; /* current bit-accumulation buffer */ |
|
int put_bits; /* # of bits now in it */ |
|
j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */ |
|
|
|
/* Coding status for DC components */ |
|
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
|
|
|
/* Coding status for AC components */ |
|
int ac_tbl_no; /* the table number of the single component */ |
|
unsigned int EOBRUN; /* run length of EOBs */ |
|
unsigned int BE; /* # of buffered correction bits before MCU */ |
|
char * bit_buffer; /* buffer for correction bits (1 per char) */ |
|
/* packing correction bits tightly would save some space but cost time... */ |
|
|
|
unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
|
int next_restart_num; /* next restart number to write (0-7) */ |
|
|
|
/* Pointers to derived tables (these workspaces have image lifespan). |
|
* Since any one scan codes only DC or only AC, we only need one set |
|
* of tables, not one for DC and one for AC. |
|
*/ |
|
c_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; |
|
|
|
/* Statistics tables for optimization; again, one set is enough */ |
|
long * count_ptrs[NUM_HUFF_TBLS]; |
|
} phuff_entropy_encoder; |
|
|
|
typedef phuff_entropy_encoder * phuff_entropy_ptr; |
|
|
|
/* MAX_CORR_BITS is the number of bits the AC refinement correction-bit |
|
* buffer can hold. Larger sizes may slightly improve compression, but |
|
* 1000 is already well into the realm of overkill. |
|
* The minimum safe size is 64 bits. |
|
*/ |
|
|
|
#define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */ |
|
|
|
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. |
|
* We assume that int right shift is unsigned if INT32 right shift is, |
|
* which should be safe. |
|
*/ |
|
|
|
#ifdef RIGHT_SHIFT_IS_UNSIGNED |
|
#define ISHIFT_TEMPS int ishift_temp; |
|
#define IRIGHT_SHIFT(x,shft) \ |
|
((ishift_temp = (x)) < 0 ? \ |
|
(ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ |
|
(ishift_temp >> (shft))) |
|
#else |
|
#define ISHIFT_TEMPS |
|
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
|
#endif |
|
|
|
/* Forward declarations */ |
|
METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo, |
|
JBLOCKROW *MCU_data)); |
|
METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo, |
|
JBLOCKROW *MCU_data)); |
|
METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo, |
|
JBLOCKROW *MCU_data)); |
|
METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo, |
|
JBLOCKROW *MCU_data)); |
|
METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo)); |
|
METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo)); |
|
|
|
|
|
/* |
|
* Initialize for a Huffman-compressed scan using progressive JPEG. |
|
*/ |
|
|
|
METHODDEF(void) |
|
start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics) |
|
{ |
|
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
|
boolean is_DC_band; |
|
int ci, tbl; |
|
jpeg_component_info * compptr; |
|
|
|
entropy->cinfo = cinfo; |
|
entropy->gather_statistics = gather_statistics; |
|
|
|
is_DC_band = (cinfo->Ss == 0); |
|
|
|
/* We assume jcmaster.c already validated the scan parameters. */ |
|
|
|
/* Select execution routines */ |
|
if (cinfo->Ah == 0) { |
|
if (is_DC_band) |
|
entropy->pub.encode_mcu = encode_mcu_DC_first; |
|
else |
|
entropy->pub.encode_mcu = encode_mcu_AC_first; |
|
} else { |
|
if (is_DC_band) |
|
entropy->pub.encode_mcu = encode_mcu_DC_refine; |
|
else { |
|
entropy->pub.encode_mcu = encode_mcu_AC_refine; |
|
/* AC refinement needs a correction bit buffer */ |
|
if (entropy->bit_buffer == NULL) |
|
entropy->bit_buffer = (char *) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
MAX_CORR_BITS * SIZEOF(char)); |
|
} |
|
} |
|
if (gather_statistics) |
|
entropy->pub.finish_pass = finish_pass_gather_phuff; |
|
else |
|
entropy->pub.finish_pass = finish_pass_phuff; |
|
|
|
/* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1 |
|
* for AC coefficients. |
|
*/ |
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
|
compptr = cinfo->cur_comp_info[ci]; |
|
/* Initialize DC predictions to 0 */ |
|
entropy->last_dc_val[ci] = 0; |
|
/* Get table index */ |
|
if (is_DC_band) { |
|
if (cinfo->Ah != 0) /* DC refinement needs no table */ |
|
continue; |
|
tbl = compptr->dc_tbl_no; |
|
} else { |
|
entropy->ac_tbl_no = tbl = compptr->ac_tbl_no; |
|
} |
|
if (gather_statistics) { |
|
/* Check for invalid table index */ |
|
/* (make_c_derived_tbl does this in the other path) */ |
|
if (tbl < 0 || tbl >= NUM_HUFF_TBLS) |
|
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); |
|
/* Allocate and zero the statistics tables */ |
|
/* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ |
|
if (entropy->count_ptrs[tbl] == NULL) |
|
entropy->count_ptrs[tbl] = (long *) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
257 * SIZEOF(long)); |
|
MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long)); |
|
} else { |
|
/* Compute derived values for Huffman table */ |
|
/* We may do this more than once for a table, but it's not expensive */ |
|
jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl, |
|
& entropy->derived_tbls[tbl]); |
|
} |
|
} |
|
|
|
/* Initialize AC stuff */ |
|
entropy->EOBRUN = 0; |
|
entropy->BE = 0; |
|
|
|
/* Initialize bit buffer to empty */ |
|
entropy->put_buffer = 0; |
|
entropy->put_bits = 0; |
|
|
|
/* Initialize restart stuff */ |
|
entropy->restarts_to_go = cinfo->restart_interval; |
|
entropy->next_restart_num = 0; |
|
} |
|
|
|
|
|
/* Outputting bytes to the file. |
|
* NB: these must be called only when actually outputting, |
|
* that is, entropy->gather_statistics == FALSE. |
|
*/ |
|
|
|
/* Emit a byte */ |
|
#define emit_byte(entropy,val) \ |
|
{ *(entropy)->next_output_byte++ = (JOCTET) (val); \ |
|
if (--(entropy)->free_in_buffer == 0) \ |
|
dump_buffer(entropy); } |
|
|
|
|
|
LOCAL(void) |
|
dump_buffer (phuff_entropy_ptr entropy) |
|
/* Empty the output buffer; we do not support suspension in this module. */ |
|
{ |
|
struct jpeg_destination_mgr * dest = entropy->cinfo->dest; |
|
|
|
if (! (*dest->empty_output_buffer) (entropy->cinfo)) |
|
ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); |
|
/* After a successful buffer dump, must reset buffer pointers */ |
|
entropy->next_output_byte = dest->next_output_byte; |
|
entropy->free_in_buffer = dest->free_in_buffer; |
|
} |
|
|
|
|
|
/* Outputting bits to the file */ |
|
|
|
/* Only the right 24 bits of put_buffer are used; the valid bits are |
|
* left-justified in this part. At most 16 bits can be passed to emit_bits |
|
* in one call, and we never retain more than 7 bits in put_buffer |
|
* between calls, so 24 bits are sufficient. |
|
*/ |
|
|
|
INLINE |
|
LOCAL(void) |
|
emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size) |
|
/* Emit some bits, unless we are in gather mode */ |
|
{ |
|
/* This routine is heavily used, so it's worth coding tightly. */ |
|
register INT32 put_buffer = (INT32) code; |
|
register int put_bits = entropy->put_bits; |
|
|
|
/* if size is 0, caller used an invalid Huffman table entry */ |
|
if (size == 0) |
|
ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
|
|
|
if (entropy->gather_statistics) |
|
return; /* do nothing if we're only getting stats */ |
|
|
|
put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ |
|
|
|
put_bits += size; /* new number of bits in buffer */ |
|
|
|
put_buffer <<= 24 - put_bits; /* align incoming bits */ |
|
|
|
put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */ |
|
|
|
while (put_bits >= 8) { |
|
int c = (int) ((put_buffer >> 16) & 0xFF); |
|
|
|
emit_byte(entropy, c); |
|
if (c == 0xFF) { /* need to stuff a zero byte? */ |
|
emit_byte(entropy, 0); |
|
} |
|
put_buffer <<= 8; |
|
put_bits -= 8; |
|
} |
|
|
|
entropy->put_buffer = put_buffer; /* update variables */ |
|
entropy->put_bits = put_bits; |
|
} |
|
|
|
|
|
LOCAL(void) |
|
flush_bits (phuff_entropy_ptr entropy) |
|
{ |
|
emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */ |
|
entropy->put_buffer = 0; /* and reset bit-buffer to empty */ |
|
entropy->put_bits = 0; |
|
} |
|
|
|
|
|
/* |
|
* Emit (or just count) a Huffman symbol. |
|
*/ |
|
|
|
INLINE |
|
LOCAL(void) |
|
emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol) |
|
{ |
|
if (entropy->gather_statistics) |
|
entropy->count_ptrs[tbl_no][symbol]++; |
|
else { |
|
c_derived_tbl * tbl = entropy->derived_tbls[tbl_no]; |
|
emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Emit bits from a correction bit buffer. |
|
*/ |
|
|
|
LOCAL(void) |
|
emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart, |
|
unsigned int nbits) |
|
{ |
|
if (entropy->gather_statistics) |
|
return; /* no real work */ |
|
|
|
while (nbits > 0) { |
|
emit_bits(entropy, (unsigned int) (*bufstart), 1); |
|
bufstart++; |
|
nbits--; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Emit any pending EOBRUN symbol. |
|
*/ |
|
|
|
LOCAL(void) |
|
emit_eobrun (phuff_entropy_ptr entropy) |
|
{ |
|
register int temp, nbits; |
|
|
|
if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */ |
|
temp = entropy->EOBRUN; |
|
nbits = 0; |
|
while ((temp >>= 1)) |
|
nbits++; |
|
/* safety check: shouldn't happen given limited correction-bit buffer */ |
|
if (nbits > 14) |
|
ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
|
|
|
emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4); |
|
if (nbits) |
|
emit_bits(entropy, entropy->EOBRUN, nbits); |
|
|
|
entropy->EOBRUN = 0; |
|
|
|
/* Emit any buffered correction bits */ |
|
emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); |
|
entropy->BE = 0; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Emit a restart marker & resynchronize predictions. |
|
*/ |
|
|
|
LOCAL(void) |
|
emit_restart (phuff_entropy_ptr entropy, int restart_num) |
|
{ |
|
int ci; |
|
|
|
emit_eobrun(entropy); |
|
|
|
if (! entropy->gather_statistics) { |
|
flush_bits(entropy); |
|
emit_byte(entropy, 0xFF); |
|
emit_byte(entropy, JPEG_RST0 + restart_num); |
|
} |
|
|
|
if (entropy->cinfo->Ss == 0) { |
|
/* Re-initialize DC predictions to 0 */ |
|
for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) |
|
entropy->last_dc_val[ci] = 0; |
|
} else { |
|
/* Re-initialize all AC-related fields to 0 */ |
|
entropy->EOBRUN = 0; |
|
entropy->BE = 0; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* MCU encoding for DC initial scan (either spectral selection, |
|
* or first pass of successive approximation). |
|
*/ |
|
|
|
METHODDEF(boolean) |
|
encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
|
{ |
|
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
|
register int temp, temp2; |
|
register int nbits; |
|
int blkn, ci; |
|
int Al = cinfo->Al; |
|
JBLOCKROW block; |
|
jpeg_component_info * compptr; |
|
ISHIFT_TEMPS |
|
|
|
entropy->next_output_byte = cinfo->dest->next_output_byte; |
|
entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
|
|
|
/* Emit restart marker if needed */ |
|
if (cinfo->restart_interval) |
|
if (entropy->restarts_to_go == 0) |
|
emit_restart(entropy, entropy->next_restart_num); |
|
|
|
/* Encode the MCU data blocks */ |
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
|
block = MCU_data[blkn]; |
|
ci = cinfo->MCU_membership[blkn]; |
|
compptr = cinfo->cur_comp_info[ci]; |
|
|
|
/* Compute the DC value after the required point transform by Al. |
|
* This is simply an arithmetic right shift. |
|
*/ |
|
temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al); |
|
|
|
/* DC differences are figured on the point-transformed values. */ |
|
temp = temp2 - entropy->last_dc_val[ci]; |
|
entropy->last_dc_val[ci] = temp2; |
|
|
|
/* Encode the DC coefficient difference per section G.1.2.1 */ |
|
temp2 = temp; |
|
if (temp < 0) { |
|
temp = -temp; /* temp is abs value of input */ |
|
/* For a negative input, want temp2 = bitwise complement of abs(input) */ |
|
/* This code assumes we are on a two's complement machine */ |
|
temp2--; |
|
} |
|
|
|
/* Find the number of bits needed for the magnitude of the coefficient */ |
|
nbits = 0; |
|
while (temp) { |
|
nbits++; |
|
temp >>= 1; |
|
} |
|
/* Check for out-of-range coefficient values. |
|
* Since we're encoding a difference, the range limit is twice as much. |
|
*/ |
|
if (nbits > MAX_COEF_BITS+1) |
|
ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
|
|
|
/* Count/emit the Huffman-coded symbol for the number of bits */ |
|
emit_symbol(entropy, compptr->dc_tbl_no, nbits); |
|
|
|
/* Emit that number of bits of the value, if positive, */ |
|
/* or the complement of its magnitude, if negative. */ |
|
if (nbits) /* emit_bits rejects calls with size 0 */ |
|
emit_bits(entropy, (unsigned int) temp2, nbits); |
|
} |
|
|
|
cinfo->dest->next_output_byte = entropy->next_output_byte; |
|
cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
|
|
|
/* Update restart-interval state too */ |
|
if (cinfo->restart_interval) { |
|
if (entropy->restarts_to_go == 0) { |
|
entropy->restarts_to_go = cinfo->restart_interval; |
|
entropy->next_restart_num++; |
|
entropy->next_restart_num &= 7; |
|
} |
|
entropy->restarts_to_go--; |
|
} |
|
|
|
return TRUE; |
|
} |
|
|
|
|
|
/* |
|
* MCU encoding for AC initial scan (either spectral selection, |
|
* or first pass of successive approximation). |
|
*/ |
|
|
|
METHODDEF(boolean) |
|
encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
|
{ |
|
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
|
register int temp, temp2; |
|
register int nbits; |
|
register int r, k; |
|
int Se = cinfo->Se; |
|
int Al = cinfo->Al; |
|
JBLOCKROW block; |
|
|
|
entropy->next_output_byte = cinfo->dest->next_output_byte; |
|
entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
|
|
|
/* Emit restart marker if needed */ |
|
if (cinfo->restart_interval) |
|
if (entropy->restarts_to_go == 0) |
|
emit_restart(entropy, entropy->next_restart_num); |
|
|
|
/* Encode the MCU data block */ |
|
block = MCU_data[0]; |
|
|
|
/* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ |
|
|
|
r = 0; /* r = run length of zeros */ |
|
|
|
for (k = cinfo->Ss; k <= Se; k++) { |
|
if ((temp = (*block)[jpeg_natural_order[k]]) == 0) { |
|
r++; |
|
continue; |
|
} |
|
/* We must apply the point transform by Al. For AC coefficients this |
|
* is an integer division with rounding towards 0. To do this portably |
|
* in C, we shift after obtaining the absolute value; so the code is |
|
* interwoven with finding the abs value (temp) and output bits (temp2). |
|
*/ |
|
if (temp < 0) { |
|
temp = -temp; /* temp is abs value of input */ |
|
temp >>= Al; /* apply the point transform */ |
|
/* For a negative coef, want temp2 = bitwise complement of abs(coef) */ |
|
temp2 = ~temp; |
|
} else { |
|
temp >>= Al; /* apply the point transform */ |
|
temp2 = temp; |
|
} |
|
/* Watch out for case that nonzero coef is zero after point transform */ |
|
if (temp == 0) { |
|
r++; |
|
continue; |
|
} |
|
|
|
/* Emit any pending EOBRUN */ |
|
if (entropy->EOBRUN > 0) |
|
emit_eobrun(entropy); |
|
/* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
|
while (r > 15) { |
|
emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
|
r -= 16; |
|
} |
|
|
|
/* Find the number of bits needed for the magnitude of the coefficient */ |
|
nbits = 1; /* there must be at least one 1 bit */ |
|
while ((temp >>= 1)) |
|
nbits++; |
|
/* Check for out-of-range coefficient values */ |
|
if (nbits > MAX_COEF_BITS) |
|
ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
|
|
|
/* Count/emit Huffman symbol for run length / number of bits */ |
|
emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); |
|
|
|
/* Emit that number of bits of the value, if positive, */ |
|
/* or the complement of its magnitude, if negative. */ |
|
emit_bits(entropy, (unsigned int) temp2, nbits); |
|
|
|
r = 0; /* reset zero run length */ |
|
} |
|
|
|
if (r > 0) { /* If there are trailing zeroes, */ |
|
entropy->EOBRUN++; /* count an EOB */ |
|
if (entropy->EOBRUN == 0x7FFF) |
|
emit_eobrun(entropy); /* force it out to avoid overflow */ |
|
} |
|
|
|
cinfo->dest->next_output_byte = entropy->next_output_byte; |
|
cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
|
|
|
/* Update restart-interval state too */ |
|
if (cinfo->restart_interval) { |
|
if (entropy->restarts_to_go == 0) { |
|
entropy->restarts_to_go = cinfo->restart_interval; |
|
entropy->next_restart_num++; |
|
entropy->next_restart_num &= 7; |
|
} |
|
entropy->restarts_to_go--; |
|
} |
|
|
|
return TRUE; |
|
} |
|
|
|
|
|
/* |
|
* MCU encoding for DC successive approximation refinement scan. |
|
* Note: we assume such scans can be multi-component, although the spec |
|
* is not very clear on the point. |
|
*/ |
|
|
|
METHODDEF(boolean) |
|
encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
|
{ |
|
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
|
register int temp; |
|
int blkn; |
|
int Al = cinfo->Al; |
|
JBLOCKROW block; |
|
|
|
entropy->next_output_byte = cinfo->dest->next_output_byte; |
|
entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
|
|
|
/* Emit restart marker if needed */ |
|
if (cinfo->restart_interval) |
|
if (entropy->restarts_to_go == 0) |
|
emit_restart(entropy, entropy->next_restart_num); |
|
|
|
/* Encode the MCU data blocks */ |
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
|
block = MCU_data[blkn]; |
|
|
|
/* We simply emit the Al'th bit of the DC coefficient value. */ |
|
temp = (*block)[0]; |
|
emit_bits(entropy, (unsigned int) (temp >> Al), 1); |
|
} |
|
|
|
cinfo->dest->next_output_byte = entropy->next_output_byte; |
|
cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
|
|
|
/* Update restart-interval state too */ |
|
if (cinfo->restart_interval) { |
|
if (entropy->restarts_to_go == 0) { |
|
entropy->restarts_to_go = cinfo->restart_interval; |
|
entropy->next_restart_num++; |
|
entropy->next_restart_num &= 7; |
|
} |
|
entropy->restarts_to_go--; |
|
} |
|
|
|
return TRUE; |
|
} |
|
|
|
|
|
/* |
|
* MCU encoding for AC successive approximation refinement scan. |
|
*/ |
|
|
|
METHODDEF(boolean) |
|
encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
|
{ |
|
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
|
register int temp; |
|
register int r, k; |
|
int EOB; |
|
char *BR_buffer; |
|
unsigned int BR; |
|
int Se = cinfo->Se; |
|
int Al = cinfo->Al; |
|
JBLOCKROW block; |
|
int absvalues[DCTSIZE2]; |
|
|
|
entropy->next_output_byte = cinfo->dest->next_output_byte; |
|
entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
|
|
|
/* Emit restart marker if needed */ |
|
if (cinfo->restart_interval) |
|
if (entropy->restarts_to_go == 0) |
|
emit_restart(entropy, entropy->next_restart_num); |
|
|
|
/* Encode the MCU data block */ |
|
block = MCU_data[0]; |
|
|
|
/* It is convenient to make a pre-pass to determine the transformed |
|
* coefficients' absolute values and the EOB position. |
|
*/ |
|
EOB = 0; |
|
for (k = cinfo->Ss; k <= Se; k++) { |
|
temp = (*block)[jpeg_natural_order[k]]; |
|
/* We must apply the point transform by Al. For AC coefficients this |
|
* is an integer division with rounding towards 0. To do this portably |
|
* in C, we shift after obtaining the absolute value. |
|
*/ |
|
if (temp < 0) |
|
temp = -temp; /* temp is abs value of input */ |
|
temp >>= Al; /* apply the point transform */ |
|
absvalues[k] = temp; /* save abs value for main pass */ |
|
if (temp == 1) |
|
EOB = k; /* EOB = index of last newly-nonzero coef */ |
|
} |
|
|
|
/* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ |
|
|
|
r = 0; /* r = run length of zeros */ |
|
BR = 0; /* BR = count of buffered bits added now */ |
|
BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ |
|
|
|
for (k = cinfo->Ss; k <= Se; k++) { |
|
if ((temp = absvalues[k]) == 0) { |
|
r++; |
|
continue; |
|
} |
|
|
|
/* Emit any required ZRLs, but not if they can be folded into EOB */ |
|
while (r > 15 && k <= EOB) { |
|
/* emit any pending EOBRUN and the BE correction bits */ |
|
emit_eobrun(entropy); |
|
/* Emit ZRL */ |
|
emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
|
r -= 16; |
|
/* Emit buffered correction bits that must be associated with ZRL */ |
|
emit_buffered_bits(entropy, BR_buffer, BR); |
|
BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
|
BR = 0; |
|
} |
|
|
|
/* If the coef was previously nonzero, it only needs a correction bit. |
|
* NOTE: a straight translation of the spec's figure G.7 would suggest |
|
* that we also need to test r > 15. But if r > 15, we can only get here |
|
* if k > EOB, which implies that this coefficient is not 1. |
|
*/ |
|
if (temp > 1) { |
|
/* The correction bit is the next bit of the absolute value. */ |
|
BR_buffer[BR++] = (char) (temp & 1); |
|
continue; |
|
} |
|
|
|
/* Emit any pending EOBRUN and the BE correction bits */ |
|
emit_eobrun(entropy); |
|
|
|
/* Count/emit Huffman symbol for run length / number of bits */ |
|
emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); |
|
|
|
/* Emit output bit for newly-nonzero coef */ |
|
temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1; |
|
emit_bits(entropy, (unsigned int) temp, 1); |
|
|
|
/* Emit buffered correction bits that must be associated with this code */ |
|
emit_buffered_bits(entropy, BR_buffer, BR); |
|
BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
|
BR = 0; |
|
r = 0; /* reset zero run length */ |
|
} |
|
|
|
if (r > 0 || BR > 0) { /* If there are trailing zeroes, */ |
|
entropy->EOBRUN++; /* count an EOB */ |
|
entropy->BE += BR; /* concat my correction bits to older ones */ |
|
/* We force out the EOB if we risk either: |
|
* 1. overflow of the EOB counter; |
|
* 2. overflow of the correction bit buffer during the next MCU. |
|
*/ |
|
if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) |
|
emit_eobrun(entropy); |
|
} |
|
|
|
cinfo->dest->next_output_byte = entropy->next_output_byte; |
|
cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
|
|
|
/* Update restart-interval state too */ |
|
if (cinfo->restart_interval) { |
|
if (entropy->restarts_to_go == 0) { |
|
entropy->restarts_to_go = cinfo->restart_interval; |
|
entropy->next_restart_num++; |
|
entropy->next_restart_num &= 7; |
|
} |
|
entropy->restarts_to_go--; |
|
} |
|
|
|
return TRUE; |
|
} |
|
|
|
|
|
/* |
|
* Finish up at the end of a Huffman-compressed progressive scan. |
|
*/ |
|
|
|
METHODDEF(void) |
|
finish_pass_phuff (j_compress_ptr cinfo) |
|
{ |
|
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
|
|
|
entropy->next_output_byte = cinfo->dest->next_output_byte; |
|
entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
|
|
|
/* Flush out any buffered data */ |
|
emit_eobrun(entropy); |
|
flush_bits(entropy); |
|
|
|
cinfo->dest->next_output_byte = entropy->next_output_byte; |
|
cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
|
} |
|
|
|
|
|
/* |
|
* Finish up a statistics-gathering pass and create the new Huffman tables. |
|
*/ |
|
|
|
METHODDEF(void) |
|
finish_pass_gather_phuff (j_compress_ptr cinfo) |
|
{ |
|
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
|
boolean is_DC_band; |
|
int ci, tbl; |
|
jpeg_component_info * compptr; |
|
JHUFF_TBL **htblptr; |
|
boolean did[NUM_HUFF_TBLS]; |
|
|
|
/* Flush out buffered data (all we care about is counting the EOB symbol) */ |
|
emit_eobrun(entropy); |
|
|
|
is_DC_band = (cinfo->Ss == 0); |
|
|
|
/* It's important not to apply jpeg_gen_optimal_table more than once |
|
* per table, because it clobbers the input frequency counts! |
|
*/ |
|
MEMZERO(did, SIZEOF(did)); |
|
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
|
compptr = cinfo->cur_comp_info[ci]; |
|
if (is_DC_band) { |
|
if (cinfo->Ah != 0) /* DC refinement needs no table */ |
|
continue; |
|
tbl = compptr->dc_tbl_no; |
|
} else { |
|
tbl = compptr->ac_tbl_no; |
|
} |
|
if (! did[tbl]) { |
|
if (is_DC_band) |
|
htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; |
|
else |
|
htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; |
|
if (*htblptr == NULL) |
|
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
|
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]); |
|
did[tbl] = TRUE; |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Module initialization routine for progressive Huffman entropy encoding. |
|
*/ |
|
|
|
GLOBAL(void) |
|
jinit_phuff_encoder (j_compress_ptr cinfo) |
|
{ |
|
phuff_entropy_ptr entropy; |
|
int i; |
|
|
|
entropy = (phuff_entropy_ptr) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
SIZEOF(phuff_entropy_encoder)); |
|
cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; |
|
entropy->pub.start_pass = start_pass_phuff; |
|
|
|
/* Mark tables unallocated */ |
|
for (i = 0; i < NUM_HUFF_TBLS; i++) { |
|
entropy->derived_tbls[i] = NULL; |
|
entropy->count_ptrs[i] = NULL; |
|
} |
|
entropy->bit_buffer = NULL; /* needed only in AC refinement scan */ |
|
} |
|
|
|
#endif /* C_PROGRESSIVE_SUPPORTED */
|
|
|