mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1453 lines
47 KiB
1453 lines
47 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html |
|
|
|
|
|
#include "opencv2/core/mat.hpp" |
|
#include "opencv2/core/types_c.h" |
|
#include "opencl_kernels_core.hpp" |
|
#include "precomp.hpp" |
|
|
|
#undef HAVE_IPP |
|
#undef CV_IPP_RUN_FAST |
|
#define CV_IPP_RUN_FAST(f, ...) |
|
#undef CV_IPP_RUN |
|
#define CV_IPP_RUN(c, f, ...) |
|
|
|
/*************************************************************************************************\ |
|
Matrix Operations |
|
\*************************************************************************************************/ |
|
|
|
void cv::swap( Mat& a, Mat& b ) |
|
{ |
|
std::swap(a.flags, b.flags); |
|
std::swap(a.dims, b.dims); |
|
std::swap(a.rows, b.rows); |
|
std::swap(a.cols, b.cols); |
|
std::swap(a.data, b.data); |
|
std::swap(a.datastart, b.datastart); |
|
std::swap(a.dataend, b.dataend); |
|
std::swap(a.datalimit, b.datalimit); |
|
std::swap(a.allocator, b.allocator); |
|
std::swap(a.u, b.u); |
|
|
|
std::swap(a.size.p, b.size.p); |
|
std::swap(a.step.p, b.step.p); |
|
std::swap(a.step.buf[0], b.step.buf[0]); |
|
std::swap(a.step.buf[1], b.step.buf[1]); |
|
|
|
if( a.step.p == b.step.buf ) |
|
{ |
|
a.step.p = a.step.buf; |
|
a.size.p = &a.rows; |
|
} |
|
|
|
if( b.step.p == a.step.buf ) |
|
{ |
|
b.step.p = b.step.buf; |
|
b.size.p = &b.rows; |
|
} |
|
} |
|
|
|
|
|
void cv::hconcat(const Mat* src, size_t nsrc, OutputArray _dst) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
if( nsrc == 0 || !src ) |
|
{ |
|
_dst.release(); |
|
return; |
|
} |
|
|
|
int totalCols = 0, cols = 0; |
|
for( size_t i = 0; i < nsrc; i++ ) |
|
{ |
|
CV_Assert( src[i].dims <= 2 && |
|
src[i].rows == src[0].rows && |
|
src[i].type() == src[0].type()); |
|
totalCols += src[i].cols; |
|
} |
|
_dst.create( src[0].rows, totalCols, src[0].type()); |
|
Mat dst = _dst.getMat(); |
|
for( size_t i = 0; i < nsrc; i++ ) |
|
{ |
|
Mat dpart = dst(Rect(cols, 0, src[i].cols, src[i].rows)); |
|
src[i].copyTo(dpart); |
|
cols += src[i].cols; |
|
} |
|
} |
|
|
|
void cv::hconcat(InputArray src1, InputArray src2, OutputArray dst) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat src[] = {src1.getMat(), src2.getMat()}; |
|
hconcat(src, 2, dst); |
|
} |
|
|
|
void cv::hconcat(InputArray _src, OutputArray dst) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
std::vector<Mat> src; |
|
_src.getMatVector(src); |
|
hconcat(!src.empty() ? &src[0] : 0, src.size(), dst); |
|
} |
|
|
|
void cv::vconcat(const Mat* src, size_t nsrc, OutputArray _dst) |
|
{ |
|
CV_TRACE_FUNCTION_SKIP_NESTED() |
|
|
|
if( nsrc == 0 || !src ) |
|
{ |
|
_dst.release(); |
|
return; |
|
} |
|
|
|
int totalRows = 0, rows = 0; |
|
for( size_t i = 0; i < nsrc; i++ ) |
|
{ |
|
CV_Assert(src[i].dims <= 2 && |
|
src[i].cols == src[0].cols && |
|
src[i].type() == src[0].type()); |
|
totalRows += src[i].rows; |
|
} |
|
_dst.create( totalRows, src[0].cols, src[0].type()); |
|
Mat dst = _dst.getMat(); |
|
for( size_t i = 0; i < nsrc; i++ ) |
|
{ |
|
Mat dpart(dst, Rect(0, rows, src[i].cols, src[i].rows)); |
|
src[i].copyTo(dpart); |
|
rows += src[i].rows; |
|
} |
|
} |
|
|
|
void cv::vconcat(InputArray src1, InputArray src2, OutputArray dst) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat src[] = {src1.getMat(), src2.getMat()}; |
|
vconcat(src, 2, dst); |
|
} |
|
|
|
void cv::vconcat(InputArray _src, OutputArray dst) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
std::vector<Mat> src; |
|
_src.getMatVector(src); |
|
vconcat(!src.empty() ? &src[0] : 0, src.size(), dst); |
|
} |
|
|
|
//////////////////////////////////////// set identity //////////////////////////////////////////// |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
namespace cv { |
|
|
|
static bool ocl_setIdentity( InputOutputArray _m, const Scalar& s ) |
|
{ |
|
int type = _m.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), kercn = cn, rowsPerWI = 1; |
|
int sctype = CV_MAKE_TYPE(depth, cn == 3 ? 4 : cn); |
|
if (ocl::Device::getDefault().isIntel()) |
|
{ |
|
rowsPerWI = 4; |
|
if (cn == 1) |
|
{ |
|
kercn = std::min(ocl::predictOptimalVectorWidth(_m), 4); |
|
if (kercn != 4) |
|
kercn = 1; |
|
} |
|
} |
|
|
|
ocl::Kernel k("setIdentity", ocl::core::set_identity_oclsrc, |
|
format("-D T=%s -D T1=%s -D cn=%d -D ST=%s -D kercn=%d -D rowsPerWI=%d", |
|
ocl::memopTypeToStr(CV_MAKE_TYPE(depth, kercn)), |
|
ocl::memopTypeToStr(depth), cn, |
|
ocl::memopTypeToStr(sctype), |
|
kercn, rowsPerWI)); |
|
if (k.empty()) |
|
return false; |
|
|
|
UMat m = _m.getUMat(); |
|
k.args(ocl::KernelArg::WriteOnly(m, cn, kercn), |
|
ocl::KernelArg::Constant(Mat(1, 1, sctype, s))); |
|
|
|
size_t globalsize[2] = { (size_t)m.cols * cn / kercn, ((size_t)m.rows + rowsPerWI - 1) / rowsPerWI }; |
|
return k.run(2, globalsize, NULL, false); |
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
void cv::setIdentity( InputOutputArray _m, const Scalar& s ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
CV_Assert( _m.dims() <= 2 ); |
|
|
|
CV_OCL_RUN(_m.isUMat(), |
|
ocl_setIdentity(_m, s)) |
|
|
|
Mat m = _m.getMat(); |
|
int rows = m.rows, cols = m.cols, type = m.type(); |
|
|
|
if( type == CV_32FC1 ) |
|
{ |
|
float* data = m.ptr<float>(); |
|
float val = (float)s[0]; |
|
size_t step = m.step/sizeof(data[0]); |
|
|
|
for( int i = 0; i < rows; i++, data += step ) |
|
{ |
|
for( int j = 0; j < cols; j++ ) |
|
data[j] = 0; |
|
if( i < cols ) |
|
data[i] = val; |
|
} |
|
} |
|
else if( type == CV_64FC1 ) |
|
{ |
|
double* data = m.ptr<double>(); |
|
double val = s[0]; |
|
size_t step = m.step/sizeof(data[0]); |
|
|
|
for( int i = 0; i < rows; i++, data += step ) |
|
{ |
|
for( int j = 0; j < cols; j++ ) |
|
data[j] = j == i ? val : 0; |
|
} |
|
} |
|
else |
|
{ |
|
m = Scalar(0); |
|
m.diag() = s; |
|
} |
|
} |
|
|
|
//////////////////////////////////////////// trace /////////////////////////////////////////// |
|
|
|
cv::Scalar cv::trace( InputArray _m ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat m = _m.getMat(); |
|
CV_Assert( m.dims <= 2 ); |
|
int type = m.type(); |
|
int nm = std::min(m.rows, m.cols); |
|
|
|
if( type == CV_32FC1 ) |
|
{ |
|
const float* ptr = m.ptr<float>(); |
|
size_t step = m.step/sizeof(ptr[0]) + 1; |
|
double _s = 0; |
|
for( int i = 0; i < nm; i++ ) |
|
_s += ptr[i*step]; |
|
return _s; |
|
} |
|
|
|
if( type == CV_64FC1 ) |
|
{ |
|
const double* ptr = m.ptr<double>(); |
|
size_t step = m.step/sizeof(ptr[0]) + 1; |
|
double _s = 0; |
|
for( int i = 0; i < nm; i++ ) |
|
_s += ptr[i*step]; |
|
return _s; |
|
} |
|
|
|
return cv::sum(m.diag()); |
|
} |
|
|
|
////////////////////////////////////// transpose ///////////////////////////////////////// |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T> static void |
|
transpose_( const uchar* src, size_t sstep, uchar* dst, size_t dstep, Size sz ) |
|
{ |
|
int i=0, j, m = sz.width, n = sz.height; |
|
|
|
#if CV_ENABLE_UNROLLED |
|
for(; i <= m - 4; i += 4 ) |
|
{ |
|
T* d0 = (T*)(dst + dstep*i); |
|
T* d1 = (T*)(dst + dstep*(i+1)); |
|
T* d2 = (T*)(dst + dstep*(i+2)); |
|
T* d3 = (T*)(dst + dstep*(i+3)); |
|
|
|
for( j = 0; j <= n - 4; j += 4 ) |
|
{ |
|
const T* s0 = (const T*)(src + i*sizeof(T) + sstep*j); |
|
const T* s1 = (const T*)(src + i*sizeof(T) + sstep*(j+1)); |
|
const T* s2 = (const T*)(src + i*sizeof(T) + sstep*(j+2)); |
|
const T* s3 = (const T*)(src + i*sizeof(T) + sstep*(j+3)); |
|
|
|
d0[j] = s0[0]; d0[j+1] = s1[0]; d0[j+2] = s2[0]; d0[j+3] = s3[0]; |
|
d1[j] = s0[1]; d1[j+1] = s1[1]; d1[j+2] = s2[1]; d1[j+3] = s3[1]; |
|
d2[j] = s0[2]; d2[j+1] = s1[2]; d2[j+2] = s2[2]; d2[j+3] = s3[2]; |
|
d3[j] = s0[3]; d3[j+1] = s1[3]; d3[j+2] = s2[3]; d3[j+3] = s3[3]; |
|
} |
|
|
|
for( ; j < n; j++ ) |
|
{ |
|
const T* s0 = (const T*)(src + i*sizeof(T) + j*sstep); |
|
d0[j] = s0[0]; d1[j] = s0[1]; d2[j] = s0[2]; d3[j] = s0[3]; |
|
} |
|
} |
|
#endif |
|
for( ; i < m; i++ ) |
|
{ |
|
T* d0 = (T*)(dst + dstep*i); |
|
j = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for(; j <= n - 4; j += 4 ) |
|
{ |
|
const T* s0 = (const T*)(src + i*sizeof(T) + sstep*j); |
|
const T* s1 = (const T*)(src + i*sizeof(T) + sstep*(j+1)); |
|
const T* s2 = (const T*)(src + i*sizeof(T) + sstep*(j+2)); |
|
const T* s3 = (const T*)(src + i*sizeof(T) + sstep*(j+3)); |
|
|
|
d0[j] = s0[0]; d0[j+1] = s1[0]; d0[j+2] = s2[0]; d0[j+3] = s3[0]; |
|
} |
|
#endif |
|
for( ; j < n; j++ ) |
|
{ |
|
const T* s0 = (const T*)(src + i*sizeof(T) + j*sstep); |
|
d0[j] = s0[0]; |
|
} |
|
} |
|
} |
|
|
|
template<typename T> static void |
|
transposeI_( uchar* data, size_t step, int n ) |
|
{ |
|
for( int i = 0; i < n; i++ ) |
|
{ |
|
T* row = (T*)(data + step*i); |
|
uchar* data1 = data + i*sizeof(T); |
|
for( int j = i+1; j < n; j++ ) |
|
std::swap( row[j], *(T*)(data1 + step*j) ); |
|
} |
|
} |
|
|
|
typedef void (*TransposeFunc)( const uchar* src, size_t sstep, uchar* dst, size_t dstep, Size sz ); |
|
typedef void (*TransposeInplaceFunc)( uchar* data, size_t step, int n ); |
|
|
|
#define DEF_TRANSPOSE_FUNC(suffix, type) \ |
|
static void transpose_##suffix( const uchar* src, size_t sstep, uchar* dst, size_t dstep, Size sz ) \ |
|
{ transpose_<type>(src, sstep, dst, dstep, sz); } \ |
|
\ |
|
static void transposeI_##suffix( uchar* data, size_t step, int n ) \ |
|
{ transposeI_<type>(data, step, n); } |
|
|
|
DEF_TRANSPOSE_FUNC(8u, uchar) |
|
DEF_TRANSPOSE_FUNC(16u, ushort) |
|
DEF_TRANSPOSE_FUNC(8uC3, Vec3b) |
|
DEF_TRANSPOSE_FUNC(32s, int) |
|
DEF_TRANSPOSE_FUNC(16uC3, Vec3s) |
|
DEF_TRANSPOSE_FUNC(32sC2, Vec2i) |
|
DEF_TRANSPOSE_FUNC(32sC3, Vec3i) |
|
DEF_TRANSPOSE_FUNC(32sC4, Vec4i) |
|
DEF_TRANSPOSE_FUNC(32sC6, Vec6i) |
|
DEF_TRANSPOSE_FUNC(32sC8, Vec8i) |
|
|
|
static TransposeFunc transposeTab[] = |
|
{ |
|
0, transpose_8u, transpose_16u, transpose_8uC3, transpose_32s, 0, transpose_16uC3, 0, |
|
transpose_32sC2, 0, 0, 0, transpose_32sC3, 0, 0, 0, transpose_32sC4, |
|
0, 0, 0, 0, 0, 0, 0, transpose_32sC6, 0, 0, 0, 0, 0, 0, 0, transpose_32sC8 |
|
}; |
|
|
|
static TransposeInplaceFunc transposeInplaceTab[] = |
|
{ |
|
0, transposeI_8u, transposeI_16u, transposeI_8uC3, transposeI_32s, 0, transposeI_16uC3, 0, |
|
transposeI_32sC2, 0, 0, 0, transposeI_32sC3, 0, 0, 0, transposeI_32sC4, |
|
0, 0, 0, 0, 0, 0, 0, transposeI_32sC6, 0, 0, 0, 0, 0, 0, 0, transposeI_32sC8 |
|
}; |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
static bool ocl_transpose( InputArray _src, OutputArray _dst ) |
|
{ |
|
const ocl::Device & dev = ocl::Device::getDefault(); |
|
const int TILE_DIM = 32, BLOCK_ROWS = 8; |
|
int type = _src.type(), cn = CV_MAT_CN(type), depth = CV_MAT_DEPTH(type), |
|
rowsPerWI = dev.isIntel() ? 4 : 1; |
|
|
|
UMat src = _src.getUMat(); |
|
_dst.create(src.cols, src.rows, type); |
|
UMat dst = _dst.getUMat(); |
|
|
|
String kernelName("transpose"); |
|
bool inplace = dst.u == src.u; |
|
|
|
if (inplace) |
|
{ |
|
CV_Assert(dst.cols == dst.rows); |
|
kernelName += "_inplace"; |
|
} |
|
else |
|
{ |
|
// check required local memory size |
|
size_t required_local_memory = (size_t) TILE_DIM*(TILE_DIM+1)*CV_ELEM_SIZE(type); |
|
if (required_local_memory > ocl::Device::getDefault().localMemSize()) |
|
return false; |
|
} |
|
|
|
ocl::Kernel k(kernelName.c_str(), ocl::core::transpose_oclsrc, |
|
format("-D T=%s -D T1=%s -D cn=%d -D TILE_DIM=%d -D BLOCK_ROWS=%d -D rowsPerWI=%d%s", |
|
ocl::memopTypeToStr(type), ocl::memopTypeToStr(depth), |
|
cn, TILE_DIM, BLOCK_ROWS, rowsPerWI, inplace ? " -D INPLACE" : "")); |
|
if (k.empty()) |
|
return false; |
|
|
|
if (inplace) |
|
k.args(ocl::KernelArg::ReadWriteNoSize(dst), dst.rows); |
|
else |
|
k.args(ocl::KernelArg::ReadOnly(src), |
|
ocl::KernelArg::WriteOnlyNoSize(dst)); |
|
|
|
size_t localsize[2] = { TILE_DIM, BLOCK_ROWS }; |
|
size_t globalsize[2] = { (size_t)src.cols, inplace ? ((size_t)src.rows + rowsPerWI - 1) / rowsPerWI : (divUp((size_t)src.rows, TILE_DIM) * BLOCK_ROWS) }; |
|
|
|
if (inplace && dev.isIntel()) |
|
{ |
|
localsize[0] = 16; |
|
localsize[1] = dev.maxWorkGroupSize() / localsize[0]; |
|
} |
|
|
|
return k.run(2, globalsize, localsize, false); |
|
} |
|
|
|
#endif |
|
|
|
#ifdef HAVE_IPP |
|
static bool ipp_transpose( Mat &src, Mat &dst ) |
|
{ |
|
CV_INSTRUMENT_REGION_IPP(); |
|
|
|
int type = src.type(); |
|
typedef IppStatus (CV_STDCALL * IppiTranspose)(const void * pSrc, int srcStep, void * pDst, int dstStep, IppiSize roiSize); |
|
typedef IppStatus (CV_STDCALL * IppiTransposeI)(const void * pSrcDst, int srcDstStep, IppiSize roiSize); |
|
IppiTranspose ippiTranspose = 0; |
|
IppiTransposeI ippiTranspose_I = 0; |
|
|
|
if (dst.data == src.data && dst.cols == dst.rows) |
|
{ |
|
CV_SUPPRESS_DEPRECATED_START |
|
ippiTranspose_I = |
|
type == CV_8UC1 ? (IppiTransposeI)ippiTranspose_8u_C1IR : |
|
type == CV_8UC3 ? (IppiTransposeI)ippiTranspose_8u_C3IR : |
|
type == CV_8UC4 ? (IppiTransposeI)ippiTranspose_8u_C4IR : |
|
type == CV_16UC1 ? (IppiTransposeI)ippiTranspose_16u_C1IR : |
|
type == CV_16UC3 ? (IppiTransposeI)ippiTranspose_16u_C3IR : |
|
type == CV_16UC4 ? (IppiTransposeI)ippiTranspose_16u_C4IR : |
|
type == CV_16SC1 ? (IppiTransposeI)ippiTranspose_16s_C1IR : |
|
type == CV_16SC3 ? (IppiTransposeI)ippiTranspose_16s_C3IR : |
|
type == CV_16SC4 ? (IppiTransposeI)ippiTranspose_16s_C4IR : |
|
type == CV_32SC1 ? (IppiTransposeI)ippiTranspose_32s_C1IR : |
|
type == CV_32SC3 ? (IppiTransposeI)ippiTranspose_32s_C3IR : |
|
type == CV_32SC4 ? (IppiTransposeI)ippiTranspose_32s_C4IR : |
|
type == CV_32FC1 ? (IppiTransposeI)ippiTranspose_32f_C1IR : |
|
type == CV_32FC3 ? (IppiTransposeI)ippiTranspose_32f_C3IR : |
|
type == CV_32FC4 ? (IppiTransposeI)ippiTranspose_32f_C4IR : 0; |
|
CV_SUPPRESS_DEPRECATED_END |
|
} |
|
else |
|
{ |
|
ippiTranspose = |
|
type == CV_8UC1 ? (IppiTranspose)ippiTranspose_8u_C1R : |
|
type == CV_8UC3 ? (IppiTranspose)ippiTranspose_8u_C3R : |
|
type == CV_8UC4 ? (IppiTranspose)ippiTranspose_8u_C4R : |
|
type == CV_16UC1 ? (IppiTranspose)ippiTranspose_16u_C1R : |
|
type == CV_16UC3 ? (IppiTranspose)ippiTranspose_16u_C3R : |
|
type == CV_16UC4 ? (IppiTranspose)ippiTranspose_16u_C4R : |
|
type == CV_16SC1 ? (IppiTranspose)ippiTranspose_16s_C1R : |
|
type == CV_16SC3 ? (IppiTranspose)ippiTranspose_16s_C3R : |
|
type == CV_16SC4 ? (IppiTranspose)ippiTranspose_16s_C4R : |
|
type == CV_32SC1 ? (IppiTranspose)ippiTranspose_32s_C1R : |
|
type == CV_32SC3 ? (IppiTranspose)ippiTranspose_32s_C3R : |
|
type == CV_32SC4 ? (IppiTranspose)ippiTranspose_32s_C4R : |
|
type == CV_32FC1 ? (IppiTranspose)ippiTranspose_32f_C1R : |
|
type == CV_32FC3 ? (IppiTranspose)ippiTranspose_32f_C3R : |
|
type == CV_32FC4 ? (IppiTranspose)ippiTranspose_32f_C4R : 0; |
|
} |
|
|
|
IppiSize roiSize = { src.cols, src.rows }; |
|
if (ippiTranspose != 0) |
|
{ |
|
if (CV_INSTRUMENT_FUN_IPP(ippiTranspose, src.ptr(), (int)src.step, dst.ptr(), (int)dst.step, roiSize) >= 0) |
|
return true; |
|
} |
|
else if (ippiTranspose_I != 0) |
|
{ |
|
if (CV_INSTRUMENT_FUN_IPP(ippiTranspose_I, dst.ptr(), (int)dst.step, roiSize) >= 0) |
|
return true; |
|
} |
|
return false; |
|
} |
|
#endif |
|
|
|
} |
|
|
|
|
|
void cv::transpose( InputArray _src, OutputArray _dst ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
int type = _src.type(), esz = CV_ELEM_SIZE(type); |
|
CV_Assert( _src.dims() <= 2 && esz <= 32 ); |
|
|
|
CV_OCL_RUN(_dst.isUMat(), |
|
ocl_transpose(_src, _dst)) |
|
|
|
Mat src = _src.getMat(); |
|
if( src.empty() ) |
|
{ |
|
_dst.release(); |
|
return; |
|
} |
|
|
|
_dst.create(src.cols, src.rows, src.type()); |
|
Mat dst = _dst.getMat(); |
|
|
|
// handle the case of single-column/single-row matrices, stored in STL vectors. |
|
if( src.rows != dst.cols || src.cols != dst.rows ) |
|
{ |
|
CV_Assert( src.size() == dst.size() && (src.cols == 1 || src.rows == 1) ); |
|
src.copyTo(dst); |
|
return; |
|
} |
|
|
|
CV_IPP_RUN_FAST(ipp_transpose(src, dst)) |
|
|
|
if( dst.data == src.data ) |
|
{ |
|
TransposeInplaceFunc func = transposeInplaceTab[esz]; |
|
CV_Assert( func != 0 ); |
|
CV_Assert( dst.cols == dst.rows ); |
|
func( dst.ptr(), dst.step, dst.rows ); |
|
} |
|
else |
|
{ |
|
TransposeFunc func = transposeTab[esz]; |
|
CV_Assert( func != 0 ); |
|
func( src.ptr(), src.step, dst.ptr(), dst.step, src.size() ); |
|
} |
|
} |
|
|
|
|
|
////////////////////////////////////// completeSymm ///////////////////////////////////////// |
|
|
|
void cv::completeSymm( InputOutputArray _m, bool LtoR ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat m = _m.getMat(); |
|
size_t step = m.step, esz = m.elemSize(); |
|
CV_Assert( m.dims <= 2 && m.rows == m.cols ); |
|
|
|
int rows = m.rows; |
|
int j0 = 0, j1 = rows; |
|
|
|
uchar* data = m.ptr(); |
|
for( int i = 0; i < rows; i++ ) |
|
{ |
|
if( !LtoR ) j1 = i; else j0 = i+1; |
|
for( int j = j0; j < j1; j++ ) |
|
memcpy(data + (i*step + j*esz), data + (j*step + i*esz), esz); |
|
} |
|
} |
|
|
|
|
|
cv::Mat cv::Mat::cross(InputArray _m) const |
|
{ |
|
Mat m = _m.getMat(); |
|
int tp = type(), d = CV_MAT_DEPTH(tp); |
|
CV_Assert( dims <= 2 && m.dims <= 2 && size() == m.size() && tp == m.type() && |
|
((rows == 3 && cols == 1) || (cols*channels() == 3 && rows == 1))); |
|
Mat result(rows, cols, tp); |
|
|
|
if( d == CV_32F ) |
|
{ |
|
const float *a = (const float*)data, *b = (const float*)m.data; |
|
float* c = (float*)result.data; |
|
size_t lda = rows > 1 ? step/sizeof(a[0]) : 1; |
|
size_t ldb = rows > 1 ? m.step/sizeof(b[0]) : 1; |
|
|
|
c[0] = a[lda] * b[ldb*2] - a[lda*2] * b[ldb]; |
|
c[1] = a[lda*2] * b[0] - a[0] * b[ldb*2]; |
|
c[2] = a[0] * b[ldb] - a[lda] * b[0]; |
|
} |
|
else if( d == CV_64F ) |
|
{ |
|
const double *a = (const double*)data, *b = (const double*)m.data; |
|
double* c = (double*)result.data; |
|
size_t lda = rows > 1 ? step/sizeof(a[0]) : 1; |
|
size_t ldb = rows > 1 ? m.step/sizeof(b[0]) : 1; |
|
|
|
c[0] = a[lda] * b[ldb*2] - a[lda*2] * b[ldb]; |
|
c[1] = a[lda*2] * b[0] - a[0] * b[ldb*2]; |
|
c[2] = a[0] * b[ldb] - a[lda] * b[0]; |
|
} |
|
|
|
return result; |
|
} |
|
|
|
|
|
////////////////////////////////////////// reduce //////////////////////////////////////////// |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T, typename ST, class Op> static void |
|
reduceR_( const Mat& srcmat, Mat& dstmat ) |
|
{ |
|
typedef typename Op::rtype WT; |
|
Size size = srcmat.size(); |
|
size.width *= srcmat.channels(); |
|
AutoBuffer<WT> buffer(size.width); |
|
WT* buf = buffer.data(); |
|
ST* dst = dstmat.ptr<ST>(); |
|
const T* src = srcmat.ptr<T>(); |
|
size_t srcstep = srcmat.step/sizeof(src[0]); |
|
int i; |
|
Op op; |
|
|
|
for( i = 0; i < size.width; i++ ) |
|
buf[i] = src[i]; |
|
|
|
for( ; --size.height; ) |
|
{ |
|
src += srcstep; |
|
i = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for(; i <= size.width - 4; i += 4 ) |
|
{ |
|
WT s0, s1; |
|
s0 = op(buf[i], (WT)src[i]); |
|
s1 = op(buf[i+1], (WT)src[i+1]); |
|
buf[i] = s0; buf[i+1] = s1; |
|
|
|
s0 = op(buf[i+2], (WT)src[i+2]); |
|
s1 = op(buf[i+3], (WT)src[i+3]); |
|
buf[i+2] = s0; buf[i+3] = s1; |
|
} |
|
#endif |
|
for( ; i < size.width; i++ ) |
|
buf[i] = op(buf[i], (WT)src[i]); |
|
} |
|
|
|
for( i = 0; i < size.width; i++ ) |
|
dst[i] = (ST)buf[i]; |
|
} |
|
|
|
|
|
template<typename T, typename ST, class Op> static void |
|
reduceC_( const Mat& srcmat, Mat& dstmat ) |
|
{ |
|
typedef typename Op::rtype WT; |
|
Size size = srcmat.size(); |
|
int cn = srcmat.channels(); |
|
size.width *= cn; |
|
Op op; |
|
|
|
for( int y = 0; y < size.height; y++ ) |
|
{ |
|
const T* src = srcmat.ptr<T>(y); |
|
ST* dst = dstmat.ptr<ST>(y); |
|
if( size.width == cn ) |
|
for( int k = 0; k < cn; k++ ) |
|
dst[k] = src[k]; |
|
else |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
{ |
|
WT a0 = src[k], a1 = src[k+cn]; |
|
int i; |
|
for( i = 2*cn; i <= size.width - 4*cn; i += 4*cn ) |
|
{ |
|
a0 = op(a0, (WT)src[i+k]); |
|
a1 = op(a1, (WT)src[i+k+cn]); |
|
a0 = op(a0, (WT)src[i+k+cn*2]); |
|
a1 = op(a1, (WT)src[i+k+cn*3]); |
|
} |
|
|
|
for( ; i < size.width; i += cn ) |
|
{ |
|
a0 = op(a0, (WT)src[i+k]); |
|
} |
|
a0 = op(a0, a1); |
|
dst[k] = (ST)a0; |
|
} |
|
} |
|
} |
|
} |
|
|
|
typedef void (*ReduceFunc)( const Mat& src, Mat& dst ); |
|
|
|
} |
|
|
|
#define reduceSumR8u32s reduceR_<uchar, int, OpAdd<int> > |
|
#define reduceSumR8u32f reduceR_<uchar, float, OpAdd<int> > |
|
#define reduceSumR8u64f reduceR_<uchar, double,OpAdd<int> > |
|
#define reduceSumR16u32f reduceR_<ushort,float, OpAdd<float> > |
|
#define reduceSumR16u64f reduceR_<ushort,double,OpAdd<double> > |
|
#define reduceSumR16s32f reduceR_<short, float, OpAdd<float> > |
|
#define reduceSumR16s64f reduceR_<short, double,OpAdd<double> > |
|
#define reduceSumR32f32f reduceR_<float, float, OpAdd<float> > |
|
#define reduceSumR32f64f reduceR_<float, double,OpAdd<double> > |
|
#define reduceSumR64f64f reduceR_<double,double,OpAdd<double> > |
|
|
|
#define reduceMaxR8u reduceR_<uchar, uchar, OpMax<uchar> > |
|
#define reduceMaxR16u reduceR_<ushort,ushort,OpMax<ushort> > |
|
#define reduceMaxR16s reduceR_<short, short, OpMax<short> > |
|
#define reduceMaxR32f reduceR_<float, float, OpMax<float> > |
|
#define reduceMaxR64f reduceR_<double,double,OpMax<double> > |
|
|
|
#define reduceMinR8u reduceR_<uchar, uchar, OpMin<uchar> > |
|
#define reduceMinR16u reduceR_<ushort,ushort,OpMin<ushort> > |
|
#define reduceMinR16s reduceR_<short, short, OpMin<short> > |
|
#define reduceMinR32f reduceR_<float, float, OpMin<float> > |
|
#define reduceMinR64f reduceR_<double,double,OpMin<double> > |
|
|
|
#ifdef HAVE_IPP |
|
static inline bool ipp_reduceSumC_8u16u16s32f_64f(const cv::Mat& srcmat, cv::Mat& dstmat) |
|
{ |
|
int sstep = (int)srcmat.step, stype = srcmat.type(), |
|
ddepth = dstmat.depth(); |
|
|
|
IppiSize roisize = { srcmat.size().width, 1 }; |
|
|
|
typedef IppStatus (CV_STDCALL * IppiSum)(const void * pSrc, int srcStep, IppiSize roiSize, Ipp64f* pSum); |
|
typedef IppStatus (CV_STDCALL * IppiSumHint)(const void * pSrc, int srcStep, IppiSize roiSize, Ipp64f* pSum, IppHintAlgorithm hint); |
|
IppiSum ippiSum = 0; |
|
IppiSumHint ippiSumHint = 0; |
|
|
|
if(ddepth == CV_64F) |
|
{ |
|
ippiSum = |
|
stype == CV_8UC1 ? (IppiSum)ippiSum_8u_C1R : |
|
stype == CV_8UC3 ? (IppiSum)ippiSum_8u_C3R : |
|
stype == CV_8UC4 ? (IppiSum)ippiSum_8u_C4R : |
|
stype == CV_16UC1 ? (IppiSum)ippiSum_16u_C1R : |
|
stype == CV_16UC3 ? (IppiSum)ippiSum_16u_C3R : |
|
stype == CV_16UC4 ? (IppiSum)ippiSum_16u_C4R : |
|
stype == CV_16SC1 ? (IppiSum)ippiSum_16s_C1R : |
|
stype == CV_16SC3 ? (IppiSum)ippiSum_16s_C3R : |
|
stype == CV_16SC4 ? (IppiSum)ippiSum_16s_C4R : 0; |
|
ippiSumHint = |
|
stype == CV_32FC1 ? (IppiSumHint)ippiSum_32f_C1R : |
|
stype == CV_32FC3 ? (IppiSumHint)ippiSum_32f_C3R : |
|
stype == CV_32FC4 ? (IppiSumHint)ippiSum_32f_C4R : 0; |
|
} |
|
|
|
if(ippiSum) |
|
{ |
|
for(int y = 0; y < srcmat.size().height; y++) |
|
{ |
|
if(CV_INSTRUMENT_FUN_IPP(ippiSum, srcmat.ptr(y), sstep, roisize, dstmat.ptr<Ipp64f>(y)) < 0) |
|
return false; |
|
} |
|
return true; |
|
} |
|
else if(ippiSumHint) |
|
{ |
|
for(int y = 0; y < srcmat.size().height; y++) |
|
{ |
|
if(CV_INSTRUMENT_FUN_IPP(ippiSumHint, srcmat.ptr(y), sstep, roisize, dstmat.ptr<Ipp64f>(y), ippAlgHintAccurate) < 0) |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
static inline void reduceSumC_8u16u16s32f_64f(const cv::Mat& srcmat, cv::Mat& dstmat) |
|
{ |
|
CV_IPP_RUN_FAST(ipp_reduceSumC_8u16u16s32f_64f(srcmat, dstmat)); |
|
|
|
cv::ReduceFunc func = 0; |
|
|
|
if(dstmat.depth() == CV_64F) |
|
{ |
|
int sdepth = CV_MAT_DEPTH(srcmat.type()); |
|
func = |
|
sdepth == CV_8U ? (cv::ReduceFunc)cv::reduceC_<uchar, double, cv::OpAdd<double> > : |
|
sdepth == CV_16U ? (cv::ReduceFunc)cv::reduceC_<ushort, double, cv::OpAdd<double> > : |
|
sdepth == CV_16S ? (cv::ReduceFunc)cv::reduceC_<short, double, cv::OpAdd<double> > : |
|
sdepth == CV_32F ? (cv::ReduceFunc)cv::reduceC_<float, double, cv::OpAdd<double> > : 0; |
|
} |
|
CV_Assert(func); |
|
|
|
func(srcmat, dstmat); |
|
} |
|
|
|
#endif |
|
|
|
#define reduceSumC8u32s reduceC_<uchar, int, OpAdd<int> > |
|
#define reduceSumC8u32f reduceC_<uchar, float, OpAdd<int> > |
|
#define reduceSumC16u32f reduceC_<ushort,float, OpAdd<float> > |
|
#define reduceSumC16s32f reduceC_<short, float, OpAdd<float> > |
|
#define reduceSumC32f32f reduceC_<float, float, OpAdd<float> > |
|
#define reduceSumC64f64f reduceC_<double,double,OpAdd<double> > |
|
|
|
#ifdef HAVE_IPP |
|
#define reduceSumC8u64f reduceSumC_8u16u16s32f_64f |
|
#define reduceSumC16u64f reduceSumC_8u16u16s32f_64f |
|
#define reduceSumC16s64f reduceSumC_8u16u16s32f_64f |
|
#define reduceSumC32f64f reduceSumC_8u16u16s32f_64f |
|
#else |
|
#define reduceSumC8u64f reduceC_<uchar, double,OpAdd<int> > |
|
#define reduceSumC16u64f reduceC_<ushort,double,OpAdd<double> > |
|
#define reduceSumC16s64f reduceC_<short, double,OpAdd<double> > |
|
#define reduceSumC32f64f reduceC_<float, double,OpAdd<double> > |
|
#endif |
|
|
|
#ifdef HAVE_IPP |
|
#define REDUCE_OP(favor, optype, type1, type2) \ |
|
static inline bool ipp_reduce##optype##C##favor(const cv::Mat& srcmat, cv::Mat& dstmat) \ |
|
{ \ |
|
if((srcmat.channels() == 1)) \ |
|
{ \ |
|
int sstep = (int)srcmat.step; \ |
|
typedef Ipp##favor IppType; \ |
|
IppiSize roisize = ippiSize(srcmat.size().width, 1);\ |
|
for(int y = 0; y < srcmat.size().height; y++)\ |
|
{\ |
|
if(CV_INSTRUMENT_FUN_IPP(ippi##optype##_##favor##_C1R, srcmat.ptr<IppType>(y), sstep, roisize, dstmat.ptr<IppType>(y)) < 0)\ |
|
return false;\ |
|
}\ |
|
return true;\ |
|
}\ |
|
return false; \ |
|
} \ |
|
static inline void reduce##optype##C##favor(const cv::Mat& srcmat, cv::Mat& dstmat) \ |
|
{ \ |
|
CV_IPP_RUN_FAST(ipp_reduce##optype##C##favor(srcmat, dstmat)); \ |
|
cv::reduceC_ < type1, type2, cv::Op##optype < type2 > >(srcmat, dstmat); \ |
|
} |
|
#endif |
|
|
|
#ifdef HAVE_IPP |
|
REDUCE_OP(8u, Max, uchar, uchar) |
|
REDUCE_OP(16u, Max, ushort, ushort) |
|
REDUCE_OP(16s, Max, short, short) |
|
REDUCE_OP(32f, Max, float, float) |
|
#else |
|
#define reduceMaxC8u reduceC_<uchar, uchar, OpMax<uchar> > |
|
#define reduceMaxC16u reduceC_<ushort,ushort,OpMax<ushort> > |
|
#define reduceMaxC16s reduceC_<short, short, OpMax<short> > |
|
#define reduceMaxC32f reduceC_<float, float, OpMax<float> > |
|
#endif |
|
#define reduceMaxC64f reduceC_<double,double,OpMax<double> > |
|
|
|
#ifdef HAVE_IPP |
|
REDUCE_OP(8u, Min, uchar, uchar) |
|
REDUCE_OP(16u, Min, ushort, ushort) |
|
REDUCE_OP(16s, Min, short, short) |
|
REDUCE_OP(32f, Min, float, float) |
|
#else |
|
#define reduceMinC8u reduceC_<uchar, uchar, OpMin<uchar> > |
|
#define reduceMinC16u reduceC_<ushort,ushort,OpMin<ushort> > |
|
#define reduceMinC16s reduceC_<short, short, OpMin<short> > |
|
#define reduceMinC32f reduceC_<float, float, OpMin<float> > |
|
#endif |
|
#define reduceMinC64f reduceC_<double,double,OpMin<double> > |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
namespace cv { |
|
|
|
static bool ocl_reduce(InputArray _src, OutputArray _dst, |
|
int dim, int op, int op0, int stype, int dtype) |
|
{ |
|
const int min_opt_cols = 128, buf_cols = 32; |
|
int sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype), |
|
ddepth = CV_MAT_DEPTH(dtype), ddepth0 = ddepth; |
|
const ocl::Device &defDev = ocl::Device::getDefault(); |
|
bool doubleSupport = defDev.doubleFPConfig() > 0; |
|
|
|
size_t wgs = defDev.maxWorkGroupSize(); |
|
bool useOptimized = 1 == dim && _src.cols() > min_opt_cols && (wgs >= buf_cols); |
|
|
|
if (!doubleSupport && (sdepth == CV_64F || ddepth == CV_64F)) |
|
return false; |
|
|
|
if (op == CV_REDUCE_AVG) |
|
{ |
|
if (sdepth < CV_32S && ddepth < CV_32S) |
|
ddepth = CV_32S; |
|
} |
|
|
|
const char * const ops[4] = { "OCL_CV_REDUCE_SUM", "OCL_CV_REDUCE_AVG", |
|
"OCL_CV_REDUCE_MAX", "OCL_CV_REDUCE_MIN" }; |
|
int wdepth = std::max(ddepth, CV_32F); |
|
if (useOptimized) |
|
{ |
|
size_t tileHeight = (size_t)(wgs / buf_cols); |
|
if (defDev.isIntel()) |
|
{ |
|
static const size_t maxItemInGroupCount = 16; |
|
tileHeight = min(tileHeight, defDev.localMemSize() / buf_cols / CV_ELEM_SIZE(CV_MAKETYPE(wdepth, cn)) / maxItemInGroupCount); |
|
} |
|
char cvt[3][40]; |
|
cv::String build_opt = format("-D OP_REDUCE_PRE -D BUF_COLS=%d -D TILE_HEIGHT=%zu -D %s -D dim=1" |
|
" -D cn=%d -D ddepth=%d" |
|
" -D srcT=%s -D bufT=%s -D dstT=%s" |
|
" -D convertToWT=%s -D convertToBufT=%s -D convertToDT=%s%s", |
|
buf_cols, tileHeight, ops[op], cn, ddepth, |
|
ocl::typeToStr(sdepth), |
|
ocl::typeToStr(ddepth), |
|
ocl::typeToStr(ddepth0), |
|
ocl::convertTypeStr(ddepth, wdepth, 1, cvt[0]), |
|
ocl::convertTypeStr(sdepth, ddepth, 1, cvt[1]), |
|
ocl::convertTypeStr(wdepth, ddepth0, 1, cvt[2]), |
|
doubleSupport ? " -D DOUBLE_SUPPORT" : ""); |
|
ocl::Kernel k("reduce_horz_opt", ocl::core::reduce2_oclsrc, build_opt); |
|
if (k.empty()) |
|
return false; |
|
UMat src = _src.getUMat(); |
|
Size dsize(1, src.rows); |
|
_dst.create(dsize, dtype); |
|
UMat dst = _dst.getUMat(); |
|
|
|
if (op0 == CV_REDUCE_AVG) |
|
k.args(ocl::KernelArg::ReadOnly(src), |
|
ocl::KernelArg::WriteOnlyNoSize(dst), 1.0f / src.cols); |
|
else |
|
k.args(ocl::KernelArg::ReadOnly(src), |
|
ocl::KernelArg::WriteOnlyNoSize(dst)); |
|
|
|
size_t localSize[2] = { (size_t)buf_cols, (size_t)tileHeight}; |
|
size_t globalSize[2] = { (size_t)buf_cols, (size_t)src.rows }; |
|
return k.run(2, globalSize, localSize, false); |
|
} |
|
else |
|
{ |
|
char cvt[2][40]; |
|
cv::String build_opt = format("-D %s -D dim=%d -D cn=%d -D ddepth=%d" |
|
" -D srcT=%s -D dstT=%s -D dstT0=%s -D convertToWT=%s" |
|
" -D convertToDT=%s -D convertToDT0=%s%s", |
|
ops[op], dim, cn, ddepth, ocl::typeToStr(useOptimized ? ddepth : sdepth), |
|
ocl::typeToStr(ddepth), ocl::typeToStr(ddepth0), |
|
ocl::convertTypeStr(ddepth, wdepth, 1, cvt[0]), |
|
ocl::convertTypeStr(sdepth, ddepth, 1, cvt[0]), |
|
ocl::convertTypeStr(wdepth, ddepth0, 1, cvt[1]), |
|
doubleSupport ? " -D DOUBLE_SUPPORT" : ""); |
|
|
|
ocl::Kernel k("reduce", ocl::core::reduce2_oclsrc, build_opt); |
|
if (k.empty()) |
|
return false; |
|
|
|
UMat src = _src.getUMat(); |
|
Size dsize(dim == 0 ? src.cols : 1, dim == 0 ? 1 : src.rows); |
|
_dst.create(dsize, dtype); |
|
UMat dst = _dst.getUMat(); |
|
|
|
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnly(src), |
|
temparg = ocl::KernelArg::WriteOnlyNoSize(dst); |
|
|
|
if (op0 == CV_REDUCE_AVG) |
|
k.args(srcarg, temparg, 1.0f / (dim == 0 ? src.rows : src.cols)); |
|
else |
|
k.args(srcarg, temparg); |
|
|
|
size_t globalsize = std::max(dsize.width, dsize.height); |
|
return k.run(1, &globalsize, NULL, false); |
|
} |
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
void cv::reduce(InputArray _src, OutputArray _dst, int dim, int op, int dtype) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
CV_Assert( _src.dims() <= 2 ); |
|
int op0 = op; |
|
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype); |
|
if( dtype < 0 ) |
|
dtype = _dst.fixedType() ? _dst.type() : stype; |
|
dtype = CV_MAKETYPE(dtype >= 0 ? dtype : stype, cn); |
|
int ddepth = CV_MAT_DEPTH(dtype); |
|
|
|
CV_Assert( cn == CV_MAT_CN(dtype) ); |
|
CV_Assert( op == CV_REDUCE_SUM || op == CV_REDUCE_MAX || |
|
op == CV_REDUCE_MIN || op == CV_REDUCE_AVG ); |
|
|
|
CV_OCL_RUN(_dst.isUMat(), |
|
ocl_reduce(_src, _dst, dim, op, op0, stype, dtype)) |
|
|
|
// Fake reference to source. Resolves issue 8693 in case of src == dst. |
|
UMat srcUMat; |
|
if (_src.isUMat()) |
|
srcUMat = _src.getUMat(); |
|
|
|
Mat src = _src.getMat(); |
|
_dst.create(dim == 0 ? 1 : src.rows, dim == 0 ? src.cols : 1, dtype); |
|
Mat dst = _dst.getMat(), temp = dst; |
|
|
|
if( op == CV_REDUCE_AVG ) |
|
{ |
|
op = CV_REDUCE_SUM; |
|
if( sdepth < CV_32S && ddepth < CV_32S ) |
|
{ |
|
temp.create(dst.rows, dst.cols, CV_32SC(cn)); |
|
ddepth = CV_32S; |
|
} |
|
} |
|
|
|
ReduceFunc func = 0; |
|
if( dim == 0 ) |
|
{ |
|
if( op == CV_REDUCE_SUM ) |
|
{ |
|
if(sdepth == CV_8U && ddepth == CV_32S) |
|
func = GET_OPTIMIZED(reduceSumR8u32s); |
|
else if(sdepth == CV_8U && ddepth == CV_32F) |
|
func = reduceSumR8u32f; |
|
else if(sdepth == CV_8U && ddepth == CV_64F) |
|
func = reduceSumR8u64f; |
|
else if(sdepth == CV_16U && ddepth == CV_32F) |
|
func = reduceSumR16u32f; |
|
else if(sdepth == CV_16U && ddepth == CV_64F) |
|
func = reduceSumR16u64f; |
|
else if(sdepth == CV_16S && ddepth == CV_32F) |
|
func = reduceSumR16s32f; |
|
else if(sdepth == CV_16S && ddepth == CV_64F) |
|
func = reduceSumR16s64f; |
|
else if(sdepth == CV_32F && ddepth == CV_32F) |
|
func = GET_OPTIMIZED(reduceSumR32f32f); |
|
else if(sdepth == CV_32F && ddepth == CV_64F) |
|
func = reduceSumR32f64f; |
|
else if(sdepth == CV_64F && ddepth == CV_64F) |
|
func = reduceSumR64f64f; |
|
} |
|
else if(op == CV_REDUCE_MAX) |
|
{ |
|
if(sdepth == CV_8U && ddepth == CV_8U) |
|
func = GET_OPTIMIZED(reduceMaxR8u); |
|
else if(sdepth == CV_16U && ddepth == CV_16U) |
|
func = reduceMaxR16u; |
|
else if(sdepth == CV_16S && ddepth == CV_16S) |
|
func = reduceMaxR16s; |
|
else if(sdepth == CV_32F && ddepth == CV_32F) |
|
func = GET_OPTIMIZED(reduceMaxR32f); |
|
else if(sdepth == CV_64F && ddepth == CV_64F) |
|
func = reduceMaxR64f; |
|
} |
|
else if(op == CV_REDUCE_MIN) |
|
{ |
|
if(sdepth == CV_8U && ddepth == CV_8U) |
|
func = GET_OPTIMIZED(reduceMinR8u); |
|
else if(sdepth == CV_16U && ddepth == CV_16U) |
|
func = reduceMinR16u; |
|
else if(sdepth == CV_16S && ddepth == CV_16S) |
|
func = reduceMinR16s; |
|
else if(sdepth == CV_32F && ddepth == CV_32F) |
|
func = GET_OPTIMIZED(reduceMinR32f); |
|
else if(sdepth == CV_64F && ddepth == CV_64F) |
|
func = reduceMinR64f; |
|
} |
|
} |
|
else |
|
{ |
|
if(op == CV_REDUCE_SUM) |
|
{ |
|
if(sdepth == CV_8U && ddepth == CV_32S) |
|
func = GET_OPTIMIZED(reduceSumC8u32s); |
|
else if(sdepth == CV_8U && ddepth == CV_32F) |
|
func = reduceSumC8u32f; |
|
else if(sdepth == CV_8U && ddepth == CV_64F) |
|
func = reduceSumC8u64f; |
|
else if(sdepth == CV_16U && ddepth == CV_32F) |
|
func = reduceSumC16u32f; |
|
else if(sdepth == CV_16U && ddepth == CV_64F) |
|
func = reduceSumC16u64f; |
|
else if(sdepth == CV_16S && ddepth == CV_32F) |
|
func = reduceSumC16s32f; |
|
else if(sdepth == CV_16S && ddepth == CV_64F) |
|
func = reduceSumC16s64f; |
|
else if(sdepth == CV_32F && ddepth == CV_32F) |
|
func = GET_OPTIMIZED(reduceSumC32f32f); |
|
else if(sdepth == CV_32F && ddepth == CV_64F) |
|
func = reduceSumC32f64f; |
|
else if(sdepth == CV_64F && ddepth == CV_64F) |
|
func = reduceSumC64f64f; |
|
} |
|
else if(op == CV_REDUCE_MAX) |
|
{ |
|
if(sdepth == CV_8U && ddepth == CV_8U) |
|
func = GET_OPTIMIZED(reduceMaxC8u); |
|
else if(sdepth == CV_16U && ddepth == CV_16U) |
|
func = reduceMaxC16u; |
|
else if(sdepth == CV_16S && ddepth == CV_16S) |
|
func = reduceMaxC16s; |
|
else if(sdepth == CV_32F && ddepth == CV_32F) |
|
func = GET_OPTIMIZED(reduceMaxC32f); |
|
else if(sdepth == CV_64F && ddepth == CV_64F) |
|
func = reduceMaxC64f; |
|
} |
|
else if(op == CV_REDUCE_MIN) |
|
{ |
|
if(sdepth == CV_8U && ddepth == CV_8U) |
|
func = GET_OPTIMIZED(reduceMinC8u); |
|
else if(sdepth == CV_16U && ddepth == CV_16U) |
|
func = reduceMinC16u; |
|
else if(sdepth == CV_16S && ddepth == CV_16S) |
|
func = reduceMinC16s; |
|
else if(sdepth == CV_32F && ddepth == CV_32F) |
|
func = GET_OPTIMIZED(reduceMinC32f); |
|
else if(sdepth == CV_64F && ddepth == CV_64F) |
|
func = reduceMinC64f; |
|
} |
|
} |
|
|
|
if( !func ) |
|
CV_Error( CV_StsUnsupportedFormat, |
|
"Unsupported combination of input and output array formats" ); |
|
|
|
func( src, temp ); |
|
|
|
if( op0 == CV_REDUCE_AVG ) |
|
temp.convertTo(dst, dst.type(), 1./(dim == 0 ? src.rows : src.cols)); |
|
} |
|
|
|
|
|
//////////////////////////////////////// sort /////////////////////////////////////////// |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T> static void sort_( const Mat& src, Mat& dst, int flags ) |
|
{ |
|
AutoBuffer<T> buf; |
|
int n, len; |
|
bool sortRows = (flags & 1) == CV_SORT_EVERY_ROW; |
|
bool inplace = src.data == dst.data; |
|
bool sortDescending = (flags & CV_SORT_DESCENDING) != 0; |
|
|
|
if( sortRows ) |
|
n = src.rows, len = src.cols; |
|
else |
|
{ |
|
n = src.cols, len = src.rows; |
|
buf.allocate(len); |
|
} |
|
T* bptr = buf.data(); |
|
|
|
for( int i = 0; i < n; i++ ) |
|
{ |
|
T* ptr = bptr; |
|
if( sortRows ) |
|
{ |
|
T* dptr = dst.ptr<T>(i); |
|
if( !inplace ) |
|
{ |
|
const T* sptr = src.ptr<T>(i); |
|
memcpy(dptr, sptr, sizeof(T) * len); |
|
} |
|
ptr = dptr; |
|
} |
|
else |
|
{ |
|
for( int j = 0; j < len; j++ ) |
|
ptr[j] = src.ptr<T>(j)[i]; |
|
} |
|
|
|
std::sort( ptr, ptr + len ); |
|
if( sortDescending ) |
|
{ |
|
for( int j = 0; j < len/2; j++ ) |
|
std::swap(ptr[j], ptr[len-1-j]); |
|
} |
|
|
|
if( !sortRows ) |
|
for( int j = 0; j < len; j++ ) |
|
dst.ptr<T>(j)[i] = ptr[j]; |
|
} |
|
} |
|
|
|
#ifdef HAVE_IPP |
|
typedef IppStatus (CV_STDCALL *IppSortFunc)(void *pSrcDst, int len, Ipp8u *pBuffer); |
|
|
|
static IppSortFunc getSortFunc(int depth, bool sortDescending) |
|
{ |
|
if (!sortDescending) |
|
return depth == CV_8U ? (IppSortFunc)ippsSortRadixAscend_8u_I : |
|
depth == CV_16U ? (IppSortFunc)ippsSortRadixAscend_16u_I : |
|
depth == CV_16S ? (IppSortFunc)ippsSortRadixAscend_16s_I : |
|
depth == CV_32S ? (IppSortFunc)ippsSortRadixAscend_32s_I : |
|
depth == CV_32F ? (IppSortFunc)ippsSortRadixAscend_32f_I : |
|
depth == CV_64F ? (IppSortFunc)ippsSortRadixAscend_64f_I : |
|
0; |
|
else |
|
return depth == CV_8U ? (IppSortFunc)ippsSortRadixDescend_8u_I : |
|
depth == CV_16U ? (IppSortFunc)ippsSortRadixDescend_16u_I : |
|
depth == CV_16S ? (IppSortFunc)ippsSortRadixDescend_16s_I : |
|
depth == CV_32S ? (IppSortFunc)ippsSortRadixDescend_32s_I : |
|
depth == CV_32F ? (IppSortFunc)ippsSortRadixDescend_32f_I : |
|
depth == CV_64F ? (IppSortFunc)ippsSortRadixDescend_64f_I : |
|
0; |
|
} |
|
|
|
static bool ipp_sort(const Mat& src, Mat& dst, int flags) |
|
{ |
|
CV_INSTRUMENT_REGION_IPP(); |
|
|
|
bool sortRows = (flags & 1) == CV_SORT_EVERY_ROW; |
|
bool sortDescending = (flags & CV_SORT_DESCENDING) != 0; |
|
bool inplace = (src.data == dst.data); |
|
int depth = src.depth(); |
|
IppDataType type = ippiGetDataType(depth); |
|
|
|
IppSortFunc ippsSortRadix_I = getSortFunc(depth, sortDescending); |
|
if(!ippsSortRadix_I) |
|
return false; |
|
|
|
if(sortRows) |
|
{ |
|
AutoBuffer<Ipp8u> buffer; |
|
int bufferSize; |
|
if(ippsSortRadixGetBufferSize(src.cols, type, &bufferSize) < 0) |
|
return false; |
|
|
|
buffer.allocate(bufferSize); |
|
|
|
if(!inplace) |
|
src.copyTo(dst); |
|
|
|
for(int i = 0; i < dst.rows; i++) |
|
{ |
|
if(CV_INSTRUMENT_FUN_IPP(ippsSortRadix_I, (void*)dst.ptr(i), dst.cols, buffer.data()) < 0) |
|
return false; |
|
} |
|
} |
|
else |
|
{ |
|
AutoBuffer<Ipp8u> buffer; |
|
int bufferSize; |
|
if(ippsSortRadixGetBufferSize(src.rows, type, &bufferSize) < 0) |
|
return false; |
|
|
|
buffer.allocate(bufferSize); |
|
|
|
Mat row(1, src.rows, src.type()); |
|
Mat srcSub; |
|
Mat dstSub; |
|
Rect subRect(0,0,1,src.rows); |
|
|
|
for(int i = 0; i < src.cols; i++) |
|
{ |
|
subRect.x = i; |
|
srcSub = Mat(src, subRect); |
|
dstSub = Mat(dst, subRect); |
|
srcSub.copyTo(row); |
|
|
|
if(CV_INSTRUMENT_FUN_IPP(ippsSortRadix_I, (void*)row.ptr(), dst.rows, buffer.data()) < 0) |
|
return false; |
|
|
|
row = row.reshape(1, dstSub.rows); |
|
row.copyTo(dstSub); |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
#endif |
|
|
|
template<typename _Tp> class LessThanIdx |
|
{ |
|
public: |
|
LessThanIdx( const _Tp* _arr ) : arr(_arr) {} |
|
bool operator()(int a, int b) const { return arr[a] < arr[b]; } |
|
const _Tp* arr; |
|
}; |
|
|
|
template<typename T> static void sortIdx_( const Mat& src, Mat& dst, int flags ) |
|
{ |
|
AutoBuffer<T> buf; |
|
AutoBuffer<int> ibuf; |
|
bool sortRows = (flags & 1) == CV_SORT_EVERY_ROW; |
|
bool sortDescending = (flags & CV_SORT_DESCENDING) != 0; |
|
|
|
CV_Assert( src.data != dst.data ); |
|
|
|
int n, len; |
|
if( sortRows ) |
|
n = src.rows, len = src.cols; |
|
else |
|
{ |
|
n = src.cols, len = src.rows; |
|
buf.allocate(len); |
|
ibuf.allocate(len); |
|
} |
|
T* bptr = buf.data(); |
|
int* _iptr = ibuf.data(); |
|
|
|
for( int i = 0; i < n; i++ ) |
|
{ |
|
T* ptr = bptr; |
|
int* iptr = _iptr; |
|
|
|
if( sortRows ) |
|
{ |
|
ptr = (T*)(src.data + src.step*i); |
|
iptr = dst.ptr<int>(i); |
|
} |
|
else |
|
{ |
|
for( int j = 0; j < len; j++ ) |
|
ptr[j] = src.ptr<T>(j)[i]; |
|
} |
|
for( int j = 0; j < len; j++ ) |
|
iptr[j] = j; |
|
|
|
std::sort( iptr, iptr + len, LessThanIdx<T>(ptr) ); |
|
if( sortDescending ) |
|
{ |
|
for( int j = 0; j < len/2; j++ ) |
|
std::swap(iptr[j], iptr[len-1-j]); |
|
} |
|
|
|
if( !sortRows ) |
|
for( int j = 0; j < len; j++ ) |
|
dst.ptr<int>(j)[i] = iptr[j]; |
|
} |
|
} |
|
|
|
#ifdef HAVE_IPP |
|
typedef IppStatus (CV_STDCALL *IppSortIndexFunc)(const void* pSrc, Ipp32s srcStrideBytes, Ipp32s *pDstIndx, int len, Ipp8u *pBuffer); |
|
|
|
static IppSortIndexFunc getSortIndexFunc(int depth, bool sortDescending) |
|
{ |
|
if (!sortDescending) |
|
return depth == CV_8U ? (IppSortIndexFunc)ippsSortRadixIndexAscend_8u : |
|
depth == CV_16U ? (IppSortIndexFunc)ippsSortRadixIndexAscend_16u : |
|
depth == CV_16S ? (IppSortIndexFunc)ippsSortRadixIndexAscend_16s : |
|
depth == CV_32S ? (IppSortIndexFunc)ippsSortRadixIndexAscend_32s : |
|
depth == CV_32F ? (IppSortIndexFunc)ippsSortRadixIndexAscend_32f : |
|
0; |
|
else |
|
return depth == CV_8U ? (IppSortIndexFunc)ippsSortRadixIndexDescend_8u : |
|
depth == CV_16U ? (IppSortIndexFunc)ippsSortRadixIndexDescend_16u : |
|
depth == CV_16S ? (IppSortIndexFunc)ippsSortRadixIndexDescend_16s : |
|
depth == CV_32S ? (IppSortIndexFunc)ippsSortRadixIndexDescend_32s : |
|
depth == CV_32F ? (IppSortIndexFunc)ippsSortRadixIndexDescend_32f : |
|
0; |
|
} |
|
|
|
static bool ipp_sortIdx( const Mat& src, Mat& dst, int flags ) |
|
{ |
|
CV_INSTRUMENT_REGION_IPP(); |
|
|
|
bool sortRows = (flags & 1) == SORT_EVERY_ROW; |
|
bool sortDescending = (flags & SORT_DESCENDING) != 0; |
|
int depth = src.depth(); |
|
IppDataType type = ippiGetDataType(depth); |
|
|
|
IppSortIndexFunc ippsSortRadixIndex = getSortIndexFunc(depth, sortDescending); |
|
if(!ippsSortRadixIndex) |
|
return false; |
|
|
|
if(sortRows) |
|
{ |
|
AutoBuffer<Ipp8u> buffer; |
|
int bufferSize; |
|
if(ippsSortRadixIndexGetBufferSize(src.cols, type, &bufferSize) < 0) |
|
return false; |
|
|
|
buffer.allocate(bufferSize); |
|
|
|
for(int i = 0; i < src.rows; i++) |
|
{ |
|
if(CV_INSTRUMENT_FUN_IPP(ippsSortRadixIndex, (const void*)src.ptr(i), (Ipp32s)src.step[1], (Ipp32s*)dst.ptr(i), src.cols, buffer.data()) < 0) |
|
return false; |
|
} |
|
} |
|
else |
|
{ |
|
Mat dstRow(1, dst.rows, dst.type()); |
|
Mat dstSub; |
|
Rect subRect(0,0,1,src.rows); |
|
|
|
AutoBuffer<Ipp8u> buffer; |
|
int bufferSize; |
|
if(ippsSortRadixIndexGetBufferSize(src.rows, type, &bufferSize) < 0) |
|
return false; |
|
|
|
buffer.allocate(bufferSize); |
|
|
|
Ipp32s srcStep = (Ipp32s)src.step[0]; |
|
for(int i = 0; i < src.cols; i++) |
|
{ |
|
subRect.x = i; |
|
dstSub = Mat(dst, subRect); |
|
|
|
if(CV_INSTRUMENT_FUN_IPP(ippsSortRadixIndex, (const void*)src.ptr(0, i), srcStep, (Ipp32s*)dstRow.ptr(), src.rows, buffer.data()) < 0) |
|
return false; |
|
|
|
dstRow = dstRow.reshape(1, dstSub.rows); |
|
dstRow.copyTo(dstSub); |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
#endif |
|
|
|
typedef void (*SortFunc)(const Mat& src, Mat& dst, int flags); |
|
} |
|
|
|
void cv::sort( InputArray _src, OutputArray _dst, int flags ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat src = _src.getMat(); |
|
CV_Assert( src.dims <= 2 && src.channels() == 1 ); |
|
_dst.create( src.size(), src.type() ); |
|
Mat dst = _dst.getMat(); |
|
CV_IPP_RUN_FAST(ipp_sort(src, dst, flags)); |
|
|
|
static SortFunc tab[] = |
|
{ |
|
sort_<uchar>, sort_<schar>, sort_<ushort>, sort_<short>, |
|
sort_<int>, sort_<float>, sort_<double>, 0 |
|
}; |
|
SortFunc func = tab[src.depth()]; |
|
CV_Assert( func != 0 ); |
|
|
|
func( src, dst, flags ); |
|
} |
|
|
|
void cv::sortIdx( InputArray _src, OutputArray _dst, int flags ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat src = _src.getMat(); |
|
CV_Assert( src.dims <= 2 && src.channels() == 1 ); |
|
Mat dst = _dst.getMat(); |
|
if( dst.data == src.data ) |
|
_dst.release(); |
|
_dst.create( src.size(), CV_32S ); |
|
dst = _dst.getMat(); |
|
|
|
CV_IPP_RUN_FAST(ipp_sortIdx(src, dst, flags)); |
|
|
|
static SortFunc tab[] = |
|
{ |
|
sortIdx_<uchar>, sortIdx_<schar>, sortIdx_<ushort>, sortIdx_<short>, |
|
sortIdx_<int>, sortIdx_<float>, sortIdx_<double>, 0 |
|
}; |
|
SortFunc func = tab[src.depth()]; |
|
CV_Assert( func != 0 ); |
|
func( src, dst, flags ); |
|
}
|
|
|