Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
471 lines
16 KiB
471 lines
16 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
namespace cv { |
|
namespace ml { |
|
|
|
|
|
class NormalBayesClassifierImpl : public NormalBayesClassifier |
|
{ |
|
public: |
|
NormalBayesClassifierImpl() |
|
{ |
|
nallvars = 0; |
|
} |
|
|
|
bool train( const Ptr<TrainData>& trainData, int flags ) CV_OVERRIDE |
|
{ |
|
CV_Assert(!trainData.empty()); |
|
const float min_variation = FLT_EPSILON; |
|
Mat responses = trainData->getNormCatResponses(); |
|
Mat __cls_labels = trainData->getClassLabels(); |
|
Mat __var_idx = trainData->getVarIdx(); |
|
Mat samples = trainData->getTrainSamples(); |
|
int nclasses = (int)__cls_labels.total(); |
|
|
|
int nvars = trainData->getNVars(); |
|
int s, c1, c2, cls; |
|
|
|
int __nallvars = trainData->getNAllVars(); |
|
bool update = (flags & UPDATE_MODEL) != 0; |
|
|
|
if( !update ) |
|
{ |
|
nallvars = __nallvars; |
|
count.resize(nclasses); |
|
sum.resize(nclasses); |
|
productsum.resize(nclasses); |
|
avg.resize(nclasses); |
|
inv_eigen_values.resize(nclasses); |
|
cov_rotate_mats.resize(nclasses); |
|
|
|
for( cls = 0; cls < nclasses; cls++ ) |
|
{ |
|
count[cls] = Mat::zeros( 1, nvars, CV_32SC1 ); |
|
sum[cls] = Mat::zeros( 1, nvars, CV_64FC1 ); |
|
productsum[cls] = Mat::zeros( nvars, nvars, CV_64FC1 ); |
|
avg[cls] = Mat::zeros( 1, nvars, CV_64FC1 ); |
|
inv_eigen_values[cls] = Mat::zeros( 1, nvars, CV_64FC1 ); |
|
cov_rotate_mats[cls] = Mat::zeros( nvars, nvars, CV_64FC1 ); |
|
} |
|
|
|
var_idx = __var_idx; |
|
cls_labels = __cls_labels; |
|
|
|
c.create(1, nclasses, CV_64FC1); |
|
} |
|
else |
|
{ |
|
// check that the new training data has the same dimensionality etc. |
|
if( nallvars != __nallvars || |
|
var_idx.size() != __var_idx.size() || |
|
norm(var_idx, __var_idx, NORM_INF) != 0 || |
|
cls_labels.size() != __cls_labels.size() || |
|
norm(cls_labels, __cls_labels, NORM_INF) != 0 ) |
|
CV_Error( CV_StsBadArg, |
|
"The new training data is inconsistent with the original training data; varIdx and the class labels should be the same" ); |
|
} |
|
|
|
Mat cov( nvars, nvars, CV_64FC1 ); |
|
int nsamples = samples.rows; |
|
|
|
// process train data (count, sum , productsum) |
|
for( s = 0; s < nsamples; s++ ) |
|
{ |
|
cls = responses.at<int>(s); |
|
int* count_data = count[cls].ptr<int>(); |
|
double* sum_data = sum[cls].ptr<double>(); |
|
double* prod_data = productsum[cls].ptr<double>(); |
|
const float* train_vec = samples.ptr<float>(s); |
|
|
|
for( c1 = 0; c1 < nvars; c1++, prod_data += nvars ) |
|
{ |
|
double val1 = train_vec[c1]; |
|
sum_data[c1] += val1; |
|
count_data[c1]++; |
|
for( c2 = c1; c2 < nvars; c2++ ) |
|
prod_data[c2] += train_vec[c2]*val1; |
|
} |
|
} |
|
|
|
Mat vt; |
|
|
|
// calculate avg, covariance matrix, c |
|
for( cls = 0; cls < nclasses; cls++ ) |
|
{ |
|
double det = 1; |
|
int i, j; |
|
Mat& w = inv_eigen_values[cls]; |
|
int* count_data = count[cls].ptr<int>(); |
|
double* avg_data = avg[cls].ptr<double>(); |
|
double* sum1 = sum[cls].ptr<double>(); |
|
|
|
completeSymm(productsum[cls], 0); |
|
|
|
for( j = 0; j < nvars; j++ ) |
|
{ |
|
int n = count_data[j]; |
|
avg_data[j] = n ? sum1[j] / n : 0.; |
|
} |
|
|
|
count_data = count[cls].ptr<int>(); |
|
avg_data = avg[cls].ptr<double>(); |
|
sum1 = sum[cls].ptr<double>(); |
|
|
|
for( i = 0; i < nvars; i++ ) |
|
{ |
|
double* avg2_data = avg[cls].ptr<double>(); |
|
double* sum2 = sum[cls].ptr<double>(); |
|
double* prod_data = productsum[cls].ptr<double>(i); |
|
double* cov_data = cov.ptr<double>(i); |
|
double s1val = sum1[i]; |
|
double avg1 = avg_data[i]; |
|
int _count = count_data[i]; |
|
|
|
for( j = 0; j <= i; j++ ) |
|
{ |
|
double avg2 = avg2_data[j]; |
|
double cov_val = prod_data[j] - avg1 * sum2[j] - avg2 * s1val + avg1 * avg2 * _count; |
|
cov_val = (_count > 1) ? cov_val / (_count - 1) : cov_val; |
|
cov_data[j] = cov_val; |
|
} |
|
} |
|
|
|
completeSymm( cov, 1 ); |
|
|
|
SVD::compute(cov, w, cov_rotate_mats[cls], noArray()); |
|
transpose(cov_rotate_mats[cls], cov_rotate_mats[cls]); |
|
cv::max(w, min_variation, w); |
|
for( j = 0; j < nvars; j++ ) |
|
det *= w.at<double>(j); |
|
|
|
divide(1., w, w); |
|
c.at<double>(cls) = det > 0 ? log(det) : -700; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
class NBPredictBody : public ParallelLoopBody |
|
{ |
|
public: |
|
NBPredictBody( const Mat& _c, const vector<Mat>& _cov_rotate_mats, |
|
const vector<Mat>& _inv_eigen_values, |
|
const vector<Mat>& _avg, |
|
const Mat& _samples, const Mat& _vidx, const Mat& _cls_labels, |
|
Mat& _results, Mat& _results_prob, bool _rawOutput ) |
|
{ |
|
c = &_c; |
|
cov_rotate_mats = &_cov_rotate_mats; |
|
inv_eigen_values = &_inv_eigen_values; |
|
avg = &_avg; |
|
samples = &_samples; |
|
vidx = &_vidx; |
|
cls_labels = &_cls_labels; |
|
results = &_results; |
|
results_prob = !_results_prob.empty() ? &_results_prob : 0; |
|
rawOutput = _rawOutput; |
|
value = 0; |
|
} |
|
|
|
const Mat* c; |
|
const vector<Mat>* cov_rotate_mats; |
|
const vector<Mat>* inv_eigen_values; |
|
const vector<Mat>* avg; |
|
const Mat* samples; |
|
const Mat* vidx; |
|
const Mat* cls_labels; |
|
|
|
Mat* results_prob; |
|
Mat* results; |
|
float* value; |
|
bool rawOutput; |
|
|
|
void operator()(const Range& range) const CV_OVERRIDE |
|
{ |
|
int cls = -1; |
|
int rtype = 0, rptype = 0; |
|
size_t rstep = 0, rpstep = 0; |
|
int nclasses = (int)cls_labels->total(); |
|
int nvars = avg->at(0).cols; |
|
double probability = 0; |
|
const int* vptr = vidx && !vidx->empty() ? vidx->ptr<int>() : 0; |
|
|
|
if (results) |
|
{ |
|
rtype = results->type(); |
|
rstep = results->isContinuous() ? 1 : results->step/results->elemSize(); |
|
} |
|
if (results_prob) |
|
{ |
|
rptype = results_prob->type(); |
|
rpstep = results_prob->isContinuous() ? results_prob->cols : results_prob->step/results_prob->elemSize(); |
|
} |
|
// allocate memory and initializing headers for calculating |
|
cv::AutoBuffer<double> _buffer(nvars*2); |
|
double* _diffin = _buffer.data(); |
|
double* _diffout = _buffer.data() + nvars; |
|
Mat diffin( 1, nvars, CV_64FC1, _diffin ); |
|
Mat diffout( 1, nvars, CV_64FC1, _diffout ); |
|
|
|
for(int k = range.start; k < range.end; k++ ) |
|
{ |
|
double opt = FLT_MAX; |
|
|
|
for(int i = 0; i < nclasses; i++ ) |
|
{ |
|
double cur = c->at<double>(i); |
|
const Mat& u = cov_rotate_mats->at(i); |
|
const Mat& w = inv_eigen_values->at(i); |
|
|
|
const double* avg_data = avg->at(i).ptr<double>(); |
|
const float* x = samples->ptr<float>(k); |
|
|
|
// cov = u w u' --> cov^(-1) = u w^(-1) u' |
|
for(int j = 0; j < nvars; j++ ) |
|
_diffin[j] = avg_data[j] - x[vptr ? vptr[j] : j]; |
|
|
|
gemm( diffin, u, 1, noArray(), 0, diffout, GEMM_2_T ); |
|
for(int j = 0; j < nvars; j++ ) |
|
{ |
|
double d = _diffout[j]; |
|
cur += d*d*w.ptr<double>()[j]; |
|
} |
|
|
|
if( cur < opt ) |
|
{ |
|
cls = i; |
|
opt = cur; |
|
} |
|
probability = exp( -0.5 * cur ); |
|
|
|
if( results_prob ) |
|
{ |
|
if ( rptype == CV_32FC1 ) |
|
results_prob->ptr<float>()[k*rpstep + i] = (float)probability; |
|
else |
|
results_prob->ptr<double>()[k*rpstep + i] = probability; |
|
} |
|
} |
|
|
|
int ival = rawOutput ? cls : cls_labels->at<int>(cls); |
|
if( results ) |
|
{ |
|
if( rtype == CV_32SC1 ) |
|
results->ptr<int>()[k*rstep] = ival; |
|
else |
|
results->ptr<float>()[k*rstep] = (float)ival; |
|
} |
|
} |
|
} |
|
}; |
|
|
|
float predict( InputArray _samples, OutputArray _results, int flags ) const CV_OVERRIDE |
|
{ |
|
return predictProb(_samples, _results, noArray(), flags); |
|
} |
|
|
|
float predictProb( InputArray _samples, OutputArray _results, OutputArray _resultsProb, int flags ) const CV_OVERRIDE |
|
{ |
|
int value=0; |
|
Mat samples = _samples.getMat(), results, resultsProb; |
|
int nsamples = samples.rows, nclasses = (int)cls_labels.total(); |
|
bool rawOutput = (flags & RAW_OUTPUT) != 0; |
|
|
|
if( samples.type() != CV_32F || samples.cols != nallvars ) |
|
CV_Error( CV_StsBadArg, |
|
"The input samples must be 32f matrix with the number of columns = nallvars" ); |
|
|
|
if( (samples.rows > 1) && (! _results.needed()) ) |
|
CV_Error( CV_StsNullPtr, |
|
"When the number of input samples is >1, the output vector of results must be passed" ); |
|
|
|
if( _results.needed() ) |
|
{ |
|
_results.create(nsamples, 1, CV_32S); |
|
results = _results.getMat(); |
|
} |
|
else |
|
results = Mat(1, 1, CV_32S, &value); |
|
|
|
if( _resultsProb.needed() ) |
|
{ |
|
_resultsProb.create(nsamples, nclasses, CV_32F); |
|
resultsProb = _resultsProb.getMat(); |
|
} |
|
|
|
cv::parallel_for_(cv::Range(0, nsamples), |
|
NBPredictBody(c, cov_rotate_mats, inv_eigen_values, avg, samples, |
|
var_idx, cls_labels, results, resultsProb, rawOutput)); |
|
|
|
return (float)value; |
|
} |
|
|
|
void write( FileStorage& fs ) const CV_OVERRIDE |
|
{ |
|
int nclasses = (int)cls_labels.total(), i; |
|
|
|
writeFormat(fs); |
|
fs << "var_count" << (var_idx.empty() ? nallvars : (int)var_idx.total()); |
|
fs << "var_all" << nallvars; |
|
|
|
if( !var_idx.empty() ) |
|
fs << "var_idx" << var_idx; |
|
fs << "cls_labels" << cls_labels; |
|
|
|
fs << "count" << "["; |
|
for( i = 0; i < nclasses; i++ ) |
|
fs << count[i]; |
|
|
|
fs << "]" << "sum" << "["; |
|
for( i = 0; i < nclasses; i++ ) |
|
fs << sum[i]; |
|
|
|
fs << "]" << "productsum" << "["; |
|
for( i = 0; i < nclasses; i++ ) |
|
fs << productsum[i]; |
|
|
|
fs << "]" << "avg" << "["; |
|
for( i = 0; i < nclasses; i++ ) |
|
fs << avg[i]; |
|
|
|
fs << "]" << "inv_eigen_values" << "["; |
|
for( i = 0; i < nclasses; i++ ) |
|
fs << inv_eigen_values[i]; |
|
|
|
fs << "]" << "cov_rotate_mats" << "["; |
|
for( i = 0; i < nclasses; i++ ) |
|
fs << cov_rotate_mats[i]; |
|
|
|
fs << "]"; |
|
|
|
fs << "c" << c; |
|
} |
|
|
|
void read( const FileNode& fn ) CV_OVERRIDE |
|
{ |
|
clear(); |
|
|
|
fn["var_all"] >> nallvars; |
|
|
|
if( nallvars <= 0 ) |
|
CV_Error( CV_StsParseError, |
|
"The field \"var_count\" of NBayes classifier is missing or non-positive" ); |
|
|
|
fn["var_idx"] >> var_idx; |
|
fn["cls_labels"] >> cls_labels; |
|
|
|
int nclasses = (int)cls_labels.total(), i; |
|
|
|
if( cls_labels.empty() || nclasses < 1 ) |
|
CV_Error( CV_StsParseError, "No or invalid \"cls_labels\" in NBayes classifier" ); |
|
|
|
FileNodeIterator |
|
count_it = fn["count"].begin(), |
|
sum_it = fn["sum"].begin(), |
|
productsum_it = fn["productsum"].begin(), |
|
avg_it = fn["avg"].begin(), |
|
inv_eigen_values_it = fn["inv_eigen_values"].begin(), |
|
cov_rotate_mats_it = fn["cov_rotate_mats"].begin(); |
|
|
|
count.resize(nclasses); |
|
sum.resize(nclasses); |
|
productsum.resize(nclasses); |
|
avg.resize(nclasses); |
|
inv_eigen_values.resize(nclasses); |
|
cov_rotate_mats.resize(nclasses); |
|
|
|
for( i = 0; i < nclasses; i++, ++count_it, ++sum_it, ++productsum_it, ++avg_it, |
|
++inv_eigen_values_it, ++cov_rotate_mats_it ) |
|
{ |
|
*count_it >> count[i]; |
|
*sum_it >> sum[i]; |
|
*productsum_it >> productsum[i]; |
|
*avg_it >> avg[i]; |
|
*inv_eigen_values_it >> inv_eigen_values[i]; |
|
*cov_rotate_mats_it >> cov_rotate_mats[i]; |
|
} |
|
|
|
fn["c"] >> c; |
|
} |
|
|
|
void clear() CV_OVERRIDE |
|
{ |
|
count.clear(); |
|
sum.clear(); |
|
productsum.clear(); |
|
avg.clear(); |
|
inv_eigen_values.clear(); |
|
cov_rotate_mats.clear(); |
|
|
|
var_idx.release(); |
|
cls_labels.release(); |
|
c.release(); |
|
nallvars = 0; |
|
} |
|
|
|
bool isTrained() const CV_OVERRIDE { return !avg.empty(); } |
|
bool isClassifier() const CV_OVERRIDE { return true; } |
|
int getVarCount() const CV_OVERRIDE { return nallvars; } |
|
String getDefaultName() const CV_OVERRIDE { return "opencv_ml_nbayes"; } |
|
|
|
int nallvars; |
|
Mat var_idx, cls_labels, c; |
|
vector<Mat> count, sum, productsum, avg, inv_eigen_values, cov_rotate_mats; |
|
}; |
|
|
|
|
|
Ptr<NormalBayesClassifier> NormalBayesClassifier::create() |
|
{ |
|
Ptr<NormalBayesClassifierImpl> p = makePtr<NormalBayesClassifierImpl>(); |
|
return p; |
|
} |
|
|
|
Ptr<NormalBayesClassifier> NormalBayesClassifier::load(const String& filepath, const String& nodeName) |
|
{ |
|
return Algorithm::load<NormalBayesClassifier>(filepath, nodeName); |
|
} |
|
|
|
} |
|
} |
|
|
|
/* End of file. */
|
|
|