Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

140 lines
4.4 KiB

import numpy as np
import cv2 as cv
import argparse
# Use source data from this site:
# https://vision.in.tum.de/data/datasets/rgbd-dataset/download
# For example if you use rgbd_dataset_freiburg1_xyz sequence, your prompt should be:
# python /path_to_opencv/samples/python/volume.py --source_folder /path_to_datasets/rgbd_dataset_freiburg1_xyz --algo <some algo>
# so that the folder contains files groundtruth.txt and depth.txt
# for more info about this function look cv::Quat::toRotMat3x3(...)
def quatToMat3(a, b, c, d):
return np.array([
[1 - 2 * (c * c + d * d), 2 * (b * c - a * d) , 2 * (b * d + a * c)],
[2 * (b * c + a * d) , 1 - 2 * (b * b + d * d), 2 * (c * d - a * b)],
[2 * (b * d - a * c) , 2 * (c * d + a * b) , 1 - 2 * (b * b + c * c)]
])
def make_Rt(val):
R = quatToMat3(val[6], val[3], val[4] ,val[5])
t = np.array([ [val[0]], [val[1]], [val[2]] ])
tmp = np.array([0, 0, 0, 1])
Rt = np.append(R, t , axis=1 )
Rt = np.vstack([Rt, tmp])
return Rt
def get_image_info(path, is_depth):
image_info = {}
source = 'depth.txt'
if not is_depth:
source = 'rgb.txt'
with open(path+source) as file:
lines = file.readlines()
for line in lines:
words = line.split(' ')
if words[0] == '#':
continue
image_info[float(words[0])] = words[1][:-1]
return image_info
def get_groundtruth_info(path):
groundtruth_info = {}
with open(path+'groundtruth.txt') as file:
lines = file.readlines()
for line in lines:
words = line.split(' ')
if words[0] == '#':
continue
groundtruth_info[float(words[0])] = [float(i) for i in words[1:]]
return groundtruth_info
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'--algo',
help="""TSDF - reconstruct data in volume with bounds,
HashTSDF - reconstruct data in volume without bounds (infinite volume),
ColorTSDF - like TSDF but also keeps color data,
default - runs TSDF""",
default="")
parser.add_argument(
'-src',
'--source_folder',
default="")
args = parser.parse_args()
path = args.source_folder
if path[-1] != '/':
path += '/'
depth_info = get_image_info(path, True)
rgb_info = get_image_info(path, False)
groundtruth_info = get_groundtruth_info(path)
volume_type = cv.VolumeType_TSDF
if args.algo == "HashTSDF":
volume_type = cv.VolumeType_HashTSDF
elif args.algo == "ColorTSDF":
volume_type = cv.VolumeType_ColorTSDF
settings = cv.VolumeSettings(volume_type)
volume = cv.Volume(volume_type, settings)
for key in list(depth_info.keys())[:]:
Rt = np.eye(4)
for key1 in groundtruth_info:
if np.abs(key1 - key) < 0.01:
Rt = make_Rt(groundtruth_info[key1])
break
rgb_path = ''
for key1 in rgb_info:
if np.abs(key1 - key) < 0.05:
rgb_path = path + rgb_info[key1]
break
depthPath = path + depth_info[key]
depth = cv.imread(depthPath, cv.IMREAD_ANYDEPTH).astype(np.float32)
if depth.size <= 0:
raise Exception('Failed to load depth file: %s' % depthPath)
rgb = cv.imread(rgb_path, cv.IMREAD_COLOR).astype(np.float32)
if rgb.size <= 0:
raise Exception('Failed to load RGB file: %s' % rgb_path)
if volume_type != cv.VolumeType_ColorTSDF:
volume.integrate(depth, Rt)
else:
volume.integrateColor(depth, rgb, Rt)
size = (480, 640, 4)
points = np.zeros(size, np.float32)
normals = np.zeros(size, np.float32)
colors = np.zeros(size, np.float32)
if volume_type != cv.VolumeType_ColorTSDF:
volume.raycast(Rt, points, normals)
else:
volume.raycastColor(Rt, points, normals, colors)
channels = list(cv.split(points))
cv.imshow("X", np.absolute(channels[0]))
cv.imshow("Y", np.absolute(channels[1]))
cv.imshow("Z", channels[2])
if volume_type == cv.VolumeType_ColorTSDF:
cv.imshow("Color", colors.astype(np.uint8))
#TODO: also display normals
cv.waitKey(10)
if __name__ == '__main__':
main()