Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

98 lines
4.2 KiB

#!/usr/bin/env python
"""
Tracking of rotating point.
Point moves in a circle and is characterized by a 1D state.
state_k+1 = state_k + speed + process_noise N(0, 1e-5)
The speed is constant.
Both state and measurements vectors are 1D (a point angle),
Measurement is the real state + gaussian noise N(0, 1e-1).
The real and the measured points are connected with red line segment,
the real and the estimated points are connected with yellow line segment,
the real and the corrected estimated points are connected with green line segment.
(if Kalman filter works correctly,
the yellow segment should be shorter than the red one and
the green segment should be shorter than the yellow one).
Pressing any key (except ESC) will reset the tracking.
Pressing ESC will stop the program.
"""
import numpy as np
import cv2 as cv
from math import cos, sin, sqrt, pi
def main():
img_height = 500
img_width = 500
kalman = cv.KalmanFilter(2, 1, 0)
code = -1
num_circle_steps = 12
while True:
img = np.zeros((img_height, img_width, 3), np.uint8)
state = np.array([[0.0],[(2 * pi) / num_circle_steps]]) # start state
kalman.transitionMatrix = np.array([[1., 1.], [0., 1.]]) # F. input
kalman.measurementMatrix = 1. * np.eye(1, 2) # H. input
kalman.processNoiseCov = 1e-5 * np.eye(2) # Q. input
kalman.measurementNoiseCov = 1e-1 * np.ones((1, 1)) # R. input
kalman.errorCovPost = 1. * np.eye(2, 2) # P._k|k KF state var
kalman.statePost = 0.1 * np.random.randn(2, 1) # x^_k|k KF state var
while True:
def calc_point(angle):
return (np.around(img_width / 2. + img_width / 3.0 * cos(angle), 0).astype(int),
np.around(img_height / 2. - img_width / 3.0 * sin(angle), 1).astype(int))
img = img * 1e-3
state_angle = state[0, 0]
state_pt = calc_point(state_angle)
# advance Kalman filter to next timestep
# updates statePre, statePost, errorCovPre, errorCovPost
# k-> k+1, x'(k) = A*x(k)
# P'(k) = temp1*At + Q
prediction = kalman.predict()
predict_pt = calc_point(prediction[0, 0]) # equivalent to calc_point(kalman.statePre[0,0])
# generate measurement
measurement = kalman.measurementNoiseCov * np.random.randn(1, 1)
measurement = np.dot(kalman.measurementMatrix, state) + measurement
measurement_angle = measurement[0, 0]
measurement_pt = calc_point(measurement_angle)
# correct the state estimates based on measurements
# updates statePost & errorCovPost
kalman.correct(measurement)
improved_pt = calc_point(kalman.statePost[0, 0])
# plot points
cv.drawMarker(img, measurement_pt, (0, 0, 255), cv.MARKER_SQUARE, 5, 2)
cv.drawMarker(img, predict_pt, (0, 255, 255), cv.MARKER_SQUARE, 5, 2)
cv.drawMarker(img, improved_pt, (0, 255, 0), cv.MARKER_SQUARE, 5, 2)
cv.drawMarker(img, state_pt, (255, 255, 255), cv.MARKER_STAR, 10, 1)
# forecast one step
cv.drawMarker(img, calc_point(np.dot(kalman.transitionMatrix, kalman.statePost)[0, 0]),
(255, 255, 0), cv.MARKER_SQUARE, 12, 1)
cv.line(img, state_pt, measurement_pt, (0, 0, 255), 1, cv.LINE_AA, 0) # red measurement error
cv.line(img, state_pt, predict_pt, (0, 255, 255), 1, cv.LINE_AA, 0) # yellow pre-meas error
cv.line(img, state_pt, improved_pt, (0, 255, 0), 1, cv.LINE_AA, 0) # green post-meas error
# update the real process
process_noise = sqrt(kalman.processNoiseCov[0, 0]) * np.random.randn(2, 1)
state = np.dot(kalman.transitionMatrix, state) + process_noise # x_k+1 = F x_k + w_k
cv.imshow("Kalman", img)
code = cv.waitKey(1000)
if code != -1:
break
if code in [27, ord('q'), ord('Q')]:
break
print('Done')
if __name__ == '__main__':
print(__doc__)
main()
cv.destroyAllWindows()